These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19905763)

  • 1. Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting.
    Boreyko JB; Chen CH
    Phys Rev Lett; 2009 Oct; 103(17):174502. PubMed ID: 19905763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dewetting properties of lotus leaves.
    Zhang J; Sheng X; Jiang L
    Langmuir; 2009 Feb; 25(3):1371-6. PubMed ID: 19170641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobicity of lotus leaves versus birds wings: different physical mechanisms leading to similar phenomena.
    Bormashenko E; Gendelman O; Whyman G
    Langmuir; 2012 Oct; 28(42):14992-7. PubMed ID: 22992036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drop Impact on Two-Tier Monostable Superrepellent Surfaces.
    Shi S; Lv C; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43698-43707. PubMed ID: 31644872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state.
    Liu T; Sun W; Sun X; Ai H
    Langmuir; 2010 Sep; 26(18):14835-41. PubMed ID: 20726606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repellency of the lotus leaf: resistance to water intrusion under hydrostatic pressure.
    Extrand CW
    Langmuir; 2011 Jun; 27(11):6920-5. PubMed ID: 21545123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
    Barbieri L; Wagner E; Hoffmann P
    Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner.
    Luo C; Xiang M; Heng X
    Langmuir; 2012 Jun; 28(25):9554-61. PubMed ID: 22639865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.
    Ensikat HJ; Ditsche-Kuru P; Neinhuis C; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():152-61. PubMed ID: 21977427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; RĂ¼he J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous dewetting transitions of droplets during icing & melting cycle.
    Wang L; Tian Z; Jiang G; Luo X; Chen C; Hu X; Zhang H; Zhong M
    Nat Commun; 2022 Jan; 13(1):378. PubMed ID: 35046407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic dewetting mechanics of Wenzel and monostable Cassie-Baxter states.
    Xiao S; Zhang Z; He J
    Phys Chem Chem Phys; 2018 Oct; 20(38):24759-24767. PubMed ID: 30229243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface.
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Nov; 23(24):12217-21. PubMed ID: 17956134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrowetting-induced dewetting transitions on superhydrophobic surfaces.
    Kumari N; Garimella SV
    Langmuir; 2011 Sep; 27(17):10342-6. PubMed ID: 21770408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.