These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19905776)

  • 1. Successes and failures of Kadanoff-Baym dynamics in Hubbard nanoclusters.
    Puig von Friesen M; Verdozzi C; Almbladh CO
    Phys Rev Lett; 2009 Oct; 103(17):176404. PubMed ID: 19905776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time propagation of the Kadanoff-Baym equations for inhomogeneous systems.
    Stan A; Dahlen NE; van Leeuwen R
    J Chem Phys; 2009 Jun; 130(22):224101. PubMed ID: 19530756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many-body Green's function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer.
    Säkkinen N; Peng Y; Appel H; van Leeuwen R
    J Chem Phys; 2015 Dec; 143(23):234102. PubMed ID: 26696041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the Kadanoff-Baym equations for inhomogeneous systems: application to atoms and molecules.
    Dahlen NE; van Leeuwen R
    Phys Rev Lett; 2007 Apr; 98(15):153004. PubMed ID: 17501345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kadanoff-Baym Equations for Interacting Systems with Dissipative Lindbladian Dynamics.
    Stefanucci G
    Phys Rev Lett; 2024 Aug; 133(6):066901. PubMed ID: 39178436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static correlation beyond the random phase approximation: dissociating H2 with the Bethe-Salpeter equation and time-dependent GW.
    Olsen T; Thygesen KS
    J Chem Phys; 2014 Apr; 140(16):164116. PubMed ID: 24784262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving the Scaling Limit for Nonequilibrium Green Functions Simulations.
    Schlünzen N; Joost JP; Bonitz M
    Phys Rev Lett; 2020 Feb; 124(7):076601. PubMed ID: 32142347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time kadanoff-baym approach to plasma oscillations in a correlated electron gas.
    Kwong NH; Bonitz M
    Phys Rev Lett; 2000 Feb; 84(8):1768-71. PubMed ID: 21923209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing the success of T-matrix diagrammatic theories in representing a modified Hubbard model.
    Pisarski P; Gooding RJ
    J Phys Condens Matter; 2011 May; 23(20):205603. PubMed ID: 21540503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model.
    Xu J; Chang CC; Walter EJ; Zhang S
    J Phys Condens Matter; 2011 Dec; 23(50):505601. PubMed ID: 22127010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHEERS: a tool for correlated hole-electron evolution from real-time simulations.
    Perfetto E; Stefanucci G
    J Phys Condens Matter; 2018 Nov; 30(46):465901. PubMed ID: 30359327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory effects and nonequilibrium transport in open many-particle quantum systems.
    Knezevic I; Ferry DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066122. PubMed ID: 16241319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
    Ismail-Beigi S
    J Phys Condens Matter; 2017 Sep; 29(38):385501. PubMed ID: 28593935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entanglement Hamiltonian of Many-Body Dynamics in Strongly Correlated Systems.
    Zhu W; Huang Z; He YC; Wen X
    Phys Rev Lett; 2020 Mar; 124(10):100605. PubMed ID: 32216397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium dynamics of the Bose-Hubbard model: a projection-operator approach.
    Trefzger C; Sengupta K
    Phys Rev Lett; 2011 Mar; 106(9):095702. PubMed ID: 21405638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast dynamics of strongly correlated fermions-nonequilibrium Green functions and selfenergy approximations.
    Schlünzen N; Hermanns S; Scharnke M; Bonitz M
    J Phys Condens Matter; 2020 Mar; 32(10):103001. PubMed ID: 31247604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-particle problem in a nonequilibrium many-particle system.
    Bornath T; Kremp D; Schlanges M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6382-94. PubMed ID: 11970552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient computation of the second-Born self-energy using tensor-contraction operations.
    Tuovinen R; Covito F; Sentef MA
    J Chem Phys; 2019 Nov; 151(17):174110. PubMed ID: 31703520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state nonequilibrium density of States of driven strongly correlated lattice models in infinite dimensions.
    Joura AV; Freericks JK; Pruschke T
    Phys Rev Lett; 2008 Nov; 101(19):196401. PubMed ID: 19113287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerically Precise Benchmark of Many-Body Self-Energies on Spherical Atoms.
    Vacondio S; Varsano D; Ruini A; Ferretti A
    J Chem Theory Comput; 2022 Jun; 18(6):3703-3717. PubMed ID: 35561415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.