These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19905778)

  • 1. Violation of Anderson's theorem for the sign-reversing s-wave state of iron-pnictide superconductors.
    Onari S; Kontani H
    Phys Rev Lett; 2009 Oct; 103(17):177001. PubMed ID: 19905778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Violation of Anderson's theorem for the sign-reversing s-wave state of iron-pnictide superconductors".
    Bang Y
    Phys Rev Lett; 2011 Jun; 106(25):259701; discussion 259702. PubMed ID: 21770676
    [No Abstract]   [Full Text] [Related]  

  • 3. Disorder-induced topological change of the superconducting gap structure in iron pnictides.
    Mizukami Y; Konczykowski M; Kawamoto Y; Kurata S; Kasahara S; Hashimoto K; Mishra V; Kreisel A; Wang Y; Hirschfeld PJ; Matsuda Y; Shibauchi T
    Nat Commun; 2014 Nov; 5():5657. PubMed ID: 25430419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard-Holstein model.
    Kontani H; Onari S
    Phys Rev Lett; 2010 Apr; 104(15):157001. PubMed ID: 20482011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe(0.96) Co(0.03)Cu(0.01))As revealed by scanning tunnelling spectroscopy.
    Yang H; Wang Z; Fang D; Deng Q; Wang QH; Xiang YY; Yang Y; Wen HH
    Nat Commun; 2013; 4():2749. PubMed ID: 24248097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local electronic structure of a single nonmagnetic impurity as a test of the pairing symmetry of electrons in (K,Tl)FexSe2 superconductors.
    Zhu JX; Yu R; Balatsky AV; Si Q
    Phys Rev Lett; 2011 Oct; 107(16):167002. PubMed ID: 22107421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahedral and orbital pairing: a fully gapped pairing scenario for the iron-based superconductors.
    Ong TT; Coleman P
    Phys Rev Lett; 2013 Nov; 111(21):217003. PubMed ID: 24313519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
    Das T; Zhu JX; Graf MJ
    Sci Rep; 2015 Feb; 5():8632. PubMed ID: 25721375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Anderson's theorem for superconductors derived from topological insulators.
    Andersen L; Ramires A; Wang Z; Lorenz T; Ando Y
    Sci Adv; 2020 Feb; 6(9):eaay6502. PubMed ID: 32158943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting pairing symmetry and energy gaps of the two-orbital t-t'-J-J' model: comparisons with the ARPES experiments in iron pnictides.
    Lu F; Zou LJ
    J Phys Condens Matter; 2009 Jun; 21(25):255701. PubMed ID: 21828440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Andreev bound States as a phase-sensitive probe of the pairing symmetry of the iron pnictide superconductors.
    Ghaemi P; Wang F; Vishwanath A
    Phys Rev Lett; 2009 Apr; 102(15):157002. PubMed ID: 19518668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnon-mediated pairing and isotope effect in iron-based superconductors.
    Wu J; Phillips P
    J Phys Condens Matter; 2011 Mar; 23(9):094203. PubMed ID: 21339556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impurity-Induced Bound States in Superconductors with Spin-Orbit Coupling.
    Kim Y; Zhang J; Rossi E; Lutchyn RM
    Phys Rev Lett; 2015 Jun; 114(23):236804. PubMed ID: 26196821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of superconductivity by Néel-type magnetic fluctuations in the iron pnictides.
    Fernandes RM; Millis AJ
    Phys Rev Lett; 2013 Mar; 110(11):117004. PubMed ID: 25166566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.
    Ikeda H; Suzuki MT; Arita R
    Phys Rev Lett; 2015 Apr; 114(14):147003. PubMed ID: 25910154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.
    Mashkoori M; Björnson K; Black-Schaffer AM
    Sci Rep; 2017 Mar; 7():44107. PubMed ID: 28281570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nematicity as a probe of superconducting pairing in iron-based superconductors.
    Fernandes RM; Millis AJ
    Phys Rev Lett; 2013 Sep; 111(12):127001. PubMed ID: 24093291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glide-plane symmetry and superconducting gap structure of iron-based superconductors.
    Wang Y; Berlijn T; Hirschfeld PJ; Scalapino DJ; Maier TA
    Phys Rev Lett; 2015 Mar; 114(10):107002. PubMed ID: 25815960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a nodal-line superconducting state in LaFePO.
    Fletcher JD; Serafin A; Malone L; Analytis JG; Chu JH; Erickson AS; Fisher IR; Carrington A
    Phys Rev Lett; 2009 Apr; 102(14):147001. PubMed ID: 19392472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model for determining the pairing symmetry and relative sign of the energy gap of iron-arsenide superconductors using tunneling spectroscopy.
    Wang D; Wan Y; Wang QH
    Phys Rev Lett; 2009 May; 102(19):197004. PubMed ID: 19518990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.