These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 19905793)
1. Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Magdziarz M; Weron A; Burnecki K; Klafter J Phys Rev Lett; 2009 Oct; 103(18):180602. PubMed ID: 19905793 [TBL] [Abstract][Full Text] [Related]
2. Detecting origins of subdiffusion: P-variation test for confined systems. Magdziarz M; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011129. PubMed ID: 20866587 [TBL] [Abstract][Full Text] [Related]
3. Fractional process as a unified model for subdiffusive dynamics in experimental data. Burnecki K; Sikora G; Weron A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041912. PubMed ID: 23214620 [TBL] [Abstract][Full Text] [Related]
4. Fractional Lévy stable motion can model subdiffusive dynamics. Burnecki K; Weron A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798 [TBL] [Abstract][Full Text] [Related]
5. Fractional Fokker-Planck equation, solution, and application. Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046118. PubMed ID: 11308923 [TBL] [Abstract][Full Text] [Related]
6. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. Sokolov IM; Klafter J Chaos; 2005 Jun; 15(2):26103. PubMed ID: 16035905 [TBL] [Abstract][Full Text] [Related]
7. Langevin formulation of a subdiffusive continuous-time random walk in physical time. Cairoli A; Baule A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012102. PubMed ID: 26274120 [TBL] [Abstract][Full Text] [Related]
8. Standard and fractional Ornstein-Uhlenbeck process on a growing domain. Le Vot F; Yuste SB; Abad E Phys Rev E; 2019 Jul; 100(1-1):012142. PubMed ID: 31499768 [TBL] [Abstract][Full Text] [Related]
9. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526 [TBL] [Abstract][Full Text] [Related]
10. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm. Runfola C; Vitali S; Pagnini G R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of asynchronous random Boolean networks with asynchrony generated by stochastic processes. Deng X; Geng H; Matache MT Biosystems; 2007 Mar; 88(1-2):16-34. PubMed ID: 16870321 [TBL] [Abstract][Full Text] [Related]
12. Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Kepten E; Bronshtein I; Garini Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041919. PubMed ID: 21599212 [TBL] [Abstract][Full Text] [Related]
13. Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Watkins NW; Credgington D; Sanchez R; Rosenberg SJ; Chapman SC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041124. PubMed ID: 19518190 [TBL] [Abstract][Full Text] [Related]
14. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575 [TBL] [Abstract][Full Text] [Related]
15. Subdiffusive motion of a polymer composed of subdiffusive monomers. Weber SC; Theriot JA; Spakowitz AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011913. PubMed ID: 20866654 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion. Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519 [TBL] [Abstract][Full Text] [Related]
17. Statistical analysis of superstatistical fractional Brownian motion and applications. Maćkała A; Magdziarz M Phys Rev E; 2019 Jan; 99(1-1):012143. PubMed ID: 30780232 [TBL] [Abstract][Full Text] [Related]
18. Random death process for the regularization of subdiffusive fractional equations. Fedotov S; Falconer S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519 [TBL] [Abstract][Full Text] [Related]
19. Microscopic models for dielectric relaxation in disordered systems. Kalmykov YP; Coffey WT; Crothers DS; Titov SV Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041103. PubMed ID: 15600393 [TBL] [Abstract][Full Text] [Related]
20. Subordinated diffusion and continuous time random walk asymptotics. Dybiec B; Gudowska-Nowak E Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]