BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19905834)

  • 1. Why do red blood cells have asymmetric shapes even in a symmetric flow?
    Kaoui B; Biros G; Misbah C
    Phys Rev Lett; 2009 Oct; 103(18):188101. PubMed ID: 19905834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape transitions of fluid vesicles and red blood cells in capillary flows.
    Noguchi H; Gompper G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14159-64. PubMed ID: 16186506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the problem of slipper shapes of red blood cells in the microvasculature.
    Tahiri N; Biben T; Ez-Zahraouy H; Benyoussef A; Misbah C
    Microvasc Res; 2013 Jan; 85():40-5. PubMed ID: 23063869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate coarse-grained modeling of red blood cells.
    Pivkin IV; Karniadakis GE
    Phys Rev Lett; 2008 Sep; 101(11):118105. PubMed ID: 18851338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial Poiseuille flow.
    Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042709. PubMed ID: 24827280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic deformation and recovery response of red blood cells to a cyclically reversing shear flow: Effects of frequency of cyclically reversing shear flow and shear stress level.
    Watanabe N; Kataoka H; Yasuda T; Takatani S
    Biophys J; 2006 Sep; 91(5):1984-98. PubMed ID: 16766612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squaring, parity breaking, and S tumbling of vesicles under shear flow.
    Farutin A; Misbah C
    Phys Rev Lett; 2012 Dec; 109(24):248106. PubMed ID: 23368389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels.
    Uzoigwe C
    Med Hypotheses; 2006; 67(5):1159-63. PubMed ID: 16797867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexity of vesicle microcirculation.
    Kaoui B; Tahiri N; Biben T; Ez-Zahraouy H; Benyoussef A; Biros G; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041906. PubMed ID: 22181174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
    Aouane O; Thiébaud M; Benyoussef A; Wagner C; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033011. PubMed ID: 25314533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle shapes from molecular dynamics simulations.
    Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2006 Nov; 110(45):22780-5. PubMed ID: 17092028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J; Mendez S; Lanotte L; Nicoud F; Abkarian M; Gompper G; Fedosov DA
    Phys Rev Lett; 2018 Sep; 121(11):118103. PubMed ID: 30265089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape memory of human red blood cells.
    Fischer TM
    Biophys J; 2004 May; 86(5):3304-13. PubMed ID: 15111443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping.
    Dasanna AK; Fedosov DA; Gompper G; Schwarz US
    Soft Matter; 2019 Jul; 15(27):5511-5520. PubMed ID: 31241632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry breaking of vesicle shapes in Poiseuille flow.
    Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011902. PubMed ID: 21867208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.