These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19905834)

  • 21. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056308. PubMed ID: 23214877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.
    Fedosov DA; Peltomäki M; Gompper G
    Soft Matter; 2014 Jun; 10(24):4258-67. PubMed ID: 24752231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Swinging and synchronized rotations of red blood cells in simple shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021902. PubMed ID: 19792146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of red blood cell shapes in flow using outlier tolerant machine learning.
    Kihm A; Kaestner L; Wagner C; Quint S
    PLoS Comput Biol; 2018 Jun; 14(6):e1006278. PubMed ID: 29906283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of cell motion in tube flow.
    Pozrikidis C
    Ann Biomed Eng; 2005 Feb; 33(2):165-78. PubMed ID: 15771270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G; Guido S
    Microvasc Res; 2011 Jul; 82(1):35-41. PubMed ID: 21397612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Swinging of red blood cells under shear flow.
    Abkarian M; Faivre M; Viallat A
    Phys Rev Lett; 2007 May; 98(18):188302. PubMed ID: 17501614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversibility of red blood cell deformation.
    Zeitz M; Sens P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051904. PubMed ID: 23004785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A possible mechanism determining the stability of spiculated red blood cells.
    Iglic A
    J Biomech; 1997 Jan; 30(1):35-40. PubMed ID: 8970922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level.
    Yoon YZ; Hong H; Brown A; Kim DC; Kang DJ; Lew VL; Cicuta P
    Biophys J; 2009 Sep; 97(6):1606-15. PubMed ID: 19751665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vesicles in Poiseuille flow.
    Danker G; Vlahovska PM; Misbah C
    Phys Rev Lett; 2009 Apr; 102(14):148102. PubMed ID: 19392488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.
    Levant M; Steinberg V
    Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of red blood cells and vesicles in microchannels of oscillating width.
    Braunmüller S; Schmid L; Franke T
    J Phys Condens Matter; 2011 May; 23(18):184116. PubMed ID: 21508467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of red blood cell elastic properties in capillary occlusions.
    Božič B; Gomišček G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051902. PubMed ID: 23214809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-field theories for mathematical modeling of biological membranes.
    Lázaro GR; Pagonabarraga I; Hernández-Machado A
    Chem Phys Lipids; 2015 Jan; 185():46-60. PubMed ID: 25240471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow.
    Nouaman M; Darras A; John T; Simionato G; Rab MAE; van Wijk R; Laschke MW; Kaestner L; Wagner C; Recktenwald SM
    Cells; 2023 Jun; 12(11):. PubMed ID: 37296651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic and reversible shape response of red blood cells in synthetic liquid crystals.
    Nayani K; Evans AA; Spagnolie SE; Abbott NL
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26083-26090. PubMed ID: 33008877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.