These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19906731)

  • 21. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
    Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D
    Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators.
    Bellecourt MJ; Ray-Soni A; Harwig A; Mooney RA; Landick R
    J Mol Biol; 2019 Feb; 431(4):696-713. PubMed ID: 30630008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial RNA polymerase.
    Darst SA
    Curr Opin Struct Biol; 2001 Apr; 11(2):155-62. PubMed ID: 11297923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis of transcription arrest by coliphage HK022 Nun in an
    Kang JY; Olinares PD; Chen J; Campbell EA; Mustaev A; Chait BT; Gottesman ME; Darst SA
    Elife; 2017 Mar; 6():. PubMed ID: 28318486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors.
    Goede B; Naji S; von Kampen O; Ilg K; Thomm M
    J Biol Chem; 2006 Oct; 281(41):30581-92. PubMed ID: 16885163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Archaeal RNA polymerase arrests transcription at DNA lesions.
    Gehring AM; Santangelo TJ
    Transcription; 2017; 8(5):288-296. PubMed ID: 28598254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural evolution of multisubunit RNA polymerases.
    Werner F
    Trends Microbiol; 2008 Jun; 16(6):247-50. PubMed ID: 18468900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcription processivity: protein-DNA interactions holding together the elongation complex.
    Nudler E; Avetissova E; Markovtsov V; Goldfarb A
    Science; 1996 Jul; 273(5272):211-7. PubMed ID: 8662499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct spectroscopic study of reconstituted transcription complexes reveals that intrinsic termination is driven primarily by thermodynamic destabilization of the nucleic acid framework.
    Datta K; von Hippel PH
    J Biol Chem; 2008 Feb; 283(6):3537-3549. PubMed ID: 18070878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.
    Walker JE; Santangelo TJ
    Methods; 2015 Sep; 86():73-9. PubMed ID: 26028597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation.
    Spitalny P; Thomm M
    J Biol Chem; 2003 Aug; 278(33):30497-505. PubMed ID: 12783891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of an archaeal RNA polymerase.
    Kusser AG; Bertero MG; Naji S; Becker T; Thomm M; Beckmann R; Cramer P
    J Mol Biol; 2008 Feb; 376(2):303-7. PubMed ID: 18164030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of transcription elongation in archaea.
    Werner F
    Chem Rev; 2013 Nov; 113(11):8331-49. PubMed ID: 24024741
    [No Abstract]   [Full Text] [Related]  

  • 35. Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II.
    Meka H; Werner F; Cordell SC; Onesti S; Brick P
    Nucleic Acids Res; 2005; 33(19):6435-44. PubMed ID: 16282592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability.
    Mentesana PE; Chin-Bow ST; Sousa R; McAllister WT
    J Mol Biol; 2000 Oct; 302(5):1049-62. PubMed ID: 11183774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination.
    Sousa R; Patra D; Lafer EM
    J Mol Biol; 1992 Mar; 224(2):319-34. PubMed ID: 1560455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis.
    Wiedermannová J; Sudzinová P; Kovaľ T; Rabatinová A; Šanderova H; Ramaniuk O; Rittich Š; Dohnálek J; Fu Z; Halada P; Lewis P; Krásny L
    Nucleic Acids Res; 2014 Apr; 42(8):5151-63. PubMed ID: 24520113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins.
    Santangelo TJ; Mooney RA; Landick R; Roberts JW
    Genes Dev; 2003 May; 17(10):1281-92. PubMed ID: 12756229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement.
    Naji S; Bertero MG; Spitalny P; Cramer P; Thomm M
    Nucleic Acids Res; 2008 Feb; 36(2):676-87. PubMed ID: 18073196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.