BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19906969)

  • 1. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb.
    Prince JE; Cho JH; Dumontier E; Andrews W; Cutforth T; Tessier-Lavigne M; Parnavelas J; Cloutier JF
    J Neurosci; 2009 Nov; 29(45):14211-22. PubMed ID: 19906969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion.
    Knöll B; Schmidt H; Andrews W; Guthrie S; Pini A; Sundaresan V; Drescher U
    Development; 2003 Nov; 130(21):5073-82. PubMed ID: 12954717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb.
    Brignall AC; Raja R; Phen A; Prince JEA; Dumontier E; Cloutier JF
    Brain Struct Funct; 2018 Jan; 223(1):307-319. PubMed ID: 28815295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections.
    Cloutier JF; Sahay A; Chang EC; Tessier-Lavigne M; Dulac C; Kolodkin AL; Ginty DD
    J Neurosci; 2004 Oct; 24(41):9087-96. PubMed ID: 15483127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression.
    Prince JE; Brignall AC; Cutforth T; Shen K; Cloutier JF
    Development; 2013 Jun; 140(11):2398-408. PubMed ID: 23637329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb.
    Cho JH; Kam JW; Cloutier JF
    Dev Biol; 2012 Nov; 371(2):269-79. PubMed ID: 22981605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity regulates functional connectivity from the vomeronasal organ to the accessory olfactory bulb.
    Hovis KR; Ramnath R; Dahlen JE; Romanova AL; LaRocca G; Bier ME; Urban NN
    J Neurosci; 2012 Jun; 32(23):7907-16. PubMed ID: 22674266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb.
    Cho JH; Lépine M; Andrews W; Parnavelas J; Cloutier JF
    J Neurosci; 2007 Aug; 27(34):9094-104. PubMed ID: 17715346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β3GnT2 null mice exhibit defective accessory olfactory bulb innervation.
    Henion TR; Madany PA; Faden AA; Schwarting GA
    Mol Cell Neurosci; 2013 Jan; 52():73-86. PubMed ID: 23006775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons.
    Cloutier JF; Giger RJ; Koentges G; Dulac C; Kolodkin AL; Ginty DD
    Neuron; 2002 Mar; 33(6):877-92. PubMed ID: 11906695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of vomeronasal receptor neuron subclasses and establishment of topographic projections to the accessory olfactory bulb.
    Jia C; Goldman G; Halpern M
    Brain Res Dev Brain Res; 1997 Sep; 102(2):209-16. PubMed ID: 9352103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb.
    Naik AS; Lin JM; Taroc EZM; Katreddi RR; Frias JA; Lemus AA; Sammons MA; Forni PE
    Development; 2020 Apr; 147(8):. PubMed ID: 32341026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation and transformation of sensory information in the mouse accessory olfactory system.
    Meeks JP; Arnson HA; Holy TE
    Nat Neurosci; 2010 Jun; 13(6):723-30. PubMed ID: 20453853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying pre- and postnatal development of the vomeronasal organ.
    Katreddi RR; Forni PE
    Cell Mol Life Sci; 2021 Jun; 78(12):5069-5082. PubMed ID: 33871676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb.
    Jia C; Halpern M
    Brain Res; 1996 May; 719(1-2):117-28. PubMed ID: 8782871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calbindin D28K immunoreactive neurons in vomeronasal organ and their projections to the accessory olfactory bulb in the rat.
    Jia C; Halpern M
    Brain Res; 2003 Jul; 977(2):261-9. PubMed ID: 12834886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UMODL1/Olfactorin is an extracellular membrane-bound molecule with a restricted spatial expression in olfactory and vomeronasal neurons.
    Di Schiavi E; Riano E; Heye B; Bazzicalupo P; Rugarli EI
    Eur J Neurosci; 2005 Jun; 21(12):3291-300. PubMed ID: 16026467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bcl11b/Ctip2 controls the differentiation of vomeronasal sensory neurons in mice.
    Enomoto T; Ohmoto M; Iwata T; Uno A; Saitou M; Yamaguchi T; Kominami R; Matsumoto I; Hirota J
    J Neurosci; 2011 Jul; 31(28):10159-73. PubMed ID: 21752992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals.
    Dugan JP; Stratton A; Riley HP; Farmer WT; Mastick GS
    Mol Cell Neurosci; 2011 Jan; 46(1):347-56. PubMed ID: 21118670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for the EphA family in the topographic targeting of vomeronasal axons.
    Knöll B; Zarbalis K; Wurst W; Drescher U
    Development; 2001 Mar; 128(6):895-906. PubMed ID: 11222144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.