These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19906971)

  • 1. Cerebral and cerebrospinal processes underlying counterirritation analgesia.
    Piché M; Arsenault M; Rainville P
    J Neurosci; 2009 Nov; 29(45):14236-46. PubMed ID: 19906971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation.
    Piché M; Arsenault M; Rainville P
    Pain; 2010 Jun; 149(3):453-462. PubMed ID: 20417032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal μ-opioid receptor availability in the amygdala predicts the inhibition of pain-related brain activity during heterotopic noxious counter-stimulation.
    Piché M; Watanabe N; Sakata M; Oda K; Toyohara J; Ishii K; Ishiwata K; Hotta H
    Neurosci Res; 2014; 81-82():78-84. PubMed ID: 24583336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravenous adenosine activates diffuse nociceptive inhibitory controls in humans.
    Morélot-Panzini C; Corvol JC; Demoule A; Raux M; Fiamma MN; Willer JC; Similowski T
    J Appl Physiol (1985); 2013 Sep; 115(5):697-703. PubMed ID: 23869063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased pain inhibition in irritable bowel syndrome depends on altered descending modulation and higher-order brain processes.
    Piché M; Bouin M; Arsenault M; Poitras P; Rainville P
    Neuroscience; 2011 Nov; 195():166-75. PubMed ID: 21889972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-regulation of acute experimental pain with and without biofeedback using spinal nociceptive responses.
    Arsenault M; Piché M; Duncan GH; Rainville P
    Neuroscience; 2013 Feb; 231():102-10. PubMed ID: 23201259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans.
    Willer JC; De Broucker T; Le Bars D
    J Neurophysiol; 1989 Nov; 62(5):1028-38. PubMed ID: 2585037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal and supraspinal correlates of nociception in man.
    Dowman R
    Pain; 1991 Jun; 45(3):269-281. PubMed ID: 1876436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the pain suppressive effects of clinical and experimental painful conditioning stimuli.
    Bouhassira D; Danziger N; Attal N; Guirimand F
    Brain; 2003 May; 126(Pt 5):1068-78. PubMed ID: 12690047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffuse noxious inhibitory controls in humans: a neurophysiological investigation of a patient with a form of Brown-Séquard syndrome.
    Bouhassira D; Le Bars D; Bolgert F; Laplane D; Willer JC
    Ann Neurol; 1993 Oct; 34(4):536-43. PubMed ID: 8215241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrophysiological investigation into the pain-relieving effects of heterotopic nociceptive stimuli. Probable involvement of a supraspinal loop.
    Roby-Brami A; Bussel B; Willer JC; Le Bars D
    Brain; 1987 Dec; 110 ( Pt 6)():1497-508. PubMed ID: 2448000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the modulation of spinal pain processing are related to severity in irritable bowel syndrome.
    Bouhassira D; Moisset X; Jouet P; Duboc H; Coffin B; Sabate JM
    Neurogastroenterol Motil; 2013 Jul; 25(7):623-e468. PubMed ID: 23551988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.
    Dobek CE; Beynon ME; Bosma RL; Stroman PW
    J Pain; 2014 Oct; 15(10):1057-68. PubMed ID: 25077425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expectations modulate heterotopic noxious counter-stimulation analgesia.
    Cormier S; Piché M; Rainville P
    J Pain; 2013 Feb; 14(2):114-25. PubMed ID: 23260452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different strategies of modulation can be operative during hypnotic analgesia: a neurophysiological study.
    Danziger N; Fournier E; Bouhassira D; Michaud D; De Broucker T; Santarcangelo E; Carli G; Chertock L; Willer JC
    Pain; 1998 Mar; 75(1):85-92. PubMed ID: 9539677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dyspnea-pain counterirritation induced by inspiratory threshold loading: a laser-evoked potentials study.
    Bouvier G; Laviolette L; Kindler F; Naccache L; Mouraux A; Similowski T; Morélot-Panzini C
    J Appl Physiol (1985); 2012 Apr; 112(7):1166-73. PubMed ID: 22267389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypnosis on diffuse noxious inhibitory controls.
    Sandrini G; Milanov I; Malaguti S; Nigrelli MP; Moglia A; Nappi G
    Physiol Behav; 2000 May; 69(3):295-300. PubMed ID: 10869595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of bilateral nociceptive inputs tunes spinal and cerebral responses.
    Rustamov N; Northon S; Tessier J; Leblond H; Piché M
    Sci Rep; 2019 May; 9(1):7143. PubMed ID: 31073138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional imaging of brain responses to pain. A review and meta-analysis (2000).
    Peyron R; Laurent B; García-Larrea L
    Neurophysiol Clin; 2000 Oct; 30(5):263-88. PubMed ID: 11126640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrifugal modulation of the rat tail flick reflex evoked by graded noxious heating of the tail.
    Ness TJ; Gebhart GF
    Brain Res; 1986 Oct; 386(1-2):41-52. PubMed ID: 3779419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.