These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs. Revina Y; Petro LS; Muckli L Neuroimage; 2018 Oct; 180(Pt A):280-290. PubMed ID: 28951158 [TBL] [Abstract][Full Text] [Related]
6. Spatial specificity and inheritance of adaptation in human visual cortex. Larsson J; Harrison SJ J Neurophysiol; 2015 Aug; 114(2):1211-26. PubMed ID: 26063774 [TBL] [Abstract][Full Text] [Related]
7. Representation of Maximally Regular Textures in Human Visual Cortex. Kohler PJ; Clarke A; Yakovleva A; Liu Y; Norcia AM J Neurosci; 2016 Jan; 36(3):714-29. PubMed ID: 26791203 [TBL] [Abstract][Full Text] [Related]
8. The tuning of human visual cortex to variations in the 1/f Isherwood ZJ; Schira MM; Spehar B Neuroimage; 2017 Feb; 146():642-657. PubMed ID: 27742601 [TBL] [Abstract][Full Text] [Related]
9. fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex. Goddard E; Mullen KT Neuroimage; 2020 Jul; 215():116780. PubMed ID: 32276074 [TBL] [Abstract][Full Text] [Related]
10. Numerosity tuning in human association cortices and local image contrast representations in early visual cortex. Paul JM; van Ackooij M; Ten Cate TC; Harvey BM Nat Commun; 2022 Mar; 13(1):1340. PubMed ID: 35292648 [TBL] [Abstract][Full Text] [Related]
11. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex. Bressler DW; Silver MA Neuroimage; 2010 Nov; 53(2):526-33. PubMed ID: 20600961 [TBL] [Abstract][Full Text] [Related]
12. Consequences of polar form coherence for fMRI responses in human visual cortex. Mannion DJ; Kersten DJ; Olman CA Neuroimage; 2013 Sep; 78():152-8. PubMed ID: 23608060 [TBL] [Abstract][Full Text] [Related]
13. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex. Bayram A; Karahan E; Bilgiç B; Ademoglu A; Demiralp T Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997 [TBL] [Abstract][Full Text] [Related]
14. Neural coding of global form in the human visual cortex. Ostwald D; Lam JM; Li S; Kourtzi Z J Neurophysiol; 2008 May; 99(5):2456-69. PubMed ID: 18322002 [TBL] [Abstract][Full Text] [Related]
16. [Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging]. Yu HB; Shou TD Sheng Li Xue Bao; 2000 Oct; 52(5):411-5. PubMed ID: 11941397 [TBL] [Abstract][Full Text] [Related]
17. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization. Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583 [TBL] [Abstract][Full Text] [Related]
18. Compressive Temporal Summation in Human Visual Cortex. Zhou J; Benson NC; Kay KN; Winawer J J Neurosci; 2018 Jan; 38(3):691-709. PubMed ID: 29192127 [TBL] [Abstract][Full Text] [Related]
19. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data. Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637 [TBL] [Abstract][Full Text] [Related]
20. Radial biases in the processing of motion and motion-defined contours by human visual cortex. Clifford CW; Mannion DJ; McDonald JS J Neurophysiol; 2009 Nov; 102(5):2974-81. PubMed ID: 19759326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]