These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19907000)

  • 21. Temporal tuning of odor responses in pheromone-responsive projection neurons in the brain of the sphinx moth Manduca sexta.
    Heinbockel T; Christensen TA; Hildebrand JG
    J Comp Neurol; 1999 Jun; 409(1):1-12. PubMed ID: 10363707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Host plant odors represent immiscible information entities - blend composition and concentration matter in hawkmoths.
    Späthe A; Reinecke A; Haverkamp A; Hansson BS; Knaden M
    PLoS One; 2013; 8(10):e77135. PubMed ID: 24116211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reproductive biology of Datura wrightii: the benefits of a herbivorous pollinator.
    Bronstein JL; Huxman T; Horvath B; Farabee M; Davidowitz G
    Ann Bot; 2009 Jun; 103(9):1435-43. PubMed ID: 19287014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning modulates the ensemble representations for odors in primary olfactory networks.
    Daly KC; Christensen TA; Lei H; Smith BH; Hildebrand JG
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10476-81. PubMed ID: 15232007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth.
    Haverkamp A; Bing J; Badeke E; Hansson BS; Knaden M
    Nat Commun; 2016 May; 7():11644. PubMed ID: 27173441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends.
    Cook B; Haverkamp A; Hansson BS; Roulston T; Lerdau M; Knaden M
    J Chem Ecol; 2020 Oct; 46(10):987-996. PubMed ID: 32875538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A signal-like role for floral humidity in a nocturnal pollination system.
    Dahake A; Jain P; Vogt CC; Kandalaft W; Stroock AD; Raguso RA
    Nat Commun; 2022 Dec; 13(1):7773. PubMed ID: 36522313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiking patterns and their functional implications in the antennal lobe of the tobacco hornworm Manduca sexta.
    Lei H; Reisenman CE; Wilson CH; Gabbur P; Hildebrand JG
    PLoS One; 2011; 6(8):e23382. PubMed ID: 21897842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles.
    Fraser AM; Mechaber WL; Hildebrand JG
    J Chem Ecol; 2003 Aug; 29(8):1813-33. PubMed ID: 12956509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing.
    Locatelli FF; Fernandez PC; Smith BH
    J Exp Biol; 2016 Sep; 219(Pt 17):2752-62. PubMed ID: 27412003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance.
    Lei H; Riffell JA; Gage SL; Hildebrand JG
    J Biol; 2009; 8(2):21. PubMed ID: 19232128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures.
    Lei H; Chiu HY; Hildebrand JG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):997-1014. PubMed ID: 23974854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutagenesis of odorant coreceptor
    Fandino RA; Haverkamp A; Bisch-Knaden S; Zhang J; Bucks S; Nguyen TAT; Schröder K; Werckenthin A; Rybak J; Stengl M; Knaden M; Hansson BS; Große-Wilde E
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15677-15685. PubMed ID: 31320583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Olfactory activation patterns in the antennal lobe of the sphinx moth, Manduca sexta.
    Hansson BS; Carlsson MA; Kalinovà B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):301-8. PubMed ID: 12743734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe?
    Martin JP; Hildebrand JG
    Front Behav Neurosci; 2010; 4():. PubMed ID: 20953251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons.
    Christensen TA; Waldrop BR; Hildebrand JG
    J Neurosci; 1998 Aug; 18(15):5999-6008. PubMed ID: 9671685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hawkmoths evaluate scenting flowers with the tip of their proboscis.
    Haverkamp A; Yon F; Keesey IW; Mißbach C; Koenig C; Hansson BS; Baldwin IT; Knaden M; Kessler D
    Elife; 2016 May; 5():. PubMed ID: 27146894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antennal responses to floral scents in the butterfly Heliconius melpomene.
    Andersson S; Dobson HE
    J Chem Ecol; 2003 Oct; 29(10):2319-30. PubMed ID: 14682514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peripheral and central olfactory tuning in a moth.
    Ong RC; Stopfer M
    Chem Senses; 2012 Jun; 37(5):455-61. PubMed ID: 22362866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floral CO2 reveals flower profitability to moths.
    Thom C; Guerenstein PG; Mechaber WL; Hildebrand JG
    J Chem Ecol; 2004 Jun; 30(6):1285-8. PubMed ID: 15303329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.