BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19907002)

  • 1. Acute {beta}-adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men.
    Robinson MM; Richards JC; Hickey MS; Moore DR; Phillips SM; Bell C; Miller BF
    Am J Physiol Regul Integr Comp Physiol; 2010 Jan; 298(1):R25-33. PubMed ID: 19907002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation.
    Miura S; Kawanaka K; Kai Y; Tamura M; Goto M; Shiuchi T; Minokoshi Y; Ezaki O
    Endocrinology; 2007 Jul; 148(7):3441-8. PubMed ID: 17446185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Adrenergic receptor blockade blunts postexercise skeletal muscle mitochondrial protein synthesis rates in humans.
    Robinson MM; Bell C; Peelor FF; Miller BF
    Am J Physiol Regul Integr Comp Physiol; 2011 Aug; 301(2):R327-34. PubMed ID: 21613574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle.
    Little JP; Safdar A; Bishop D; Tarnopolsky MA; Gibala MJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1303-10. PubMed ID: 21451146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle.
    Gurd BJ; Yoshida Y; McFarlan JT; Holloway GP; Moyes CD; Heigenhauser GJ; Spriet L; Bonen A
    Am J Physiol Regul Integr Comp Physiol; 2011 Jul; 301(1):R67-75. PubMed ID: 21543634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.
    Little JP; Safdar A; Wilkin GP; Tarnopolsky MA; Gibala MJ
    J Physiol; 2010 Mar; 588(Pt 6):1011-22. PubMed ID: 20100740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGC-1alpha's relationship with skeletal muscle palmitate oxidation is not present with obesity despite maintained PGC-1alpha and PGC-1beta protein.
    Holloway GP; Perry CG; Thrush AB; Heigenhauser GJ; Dyck DJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2008 Jun; 294(6):E1060-9. PubMed ID: 18349111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to beta2-adrenergic receptor activation and exercise.
    Miura S; Kai Y; Kamei Y; Ezaki O
    Endocrinology; 2008 Sep; 149(9):4527-33. PubMed ID: 18511502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epinephrine and AICAR-induced PGC-1α mRNA expression is intact in skeletal muscle from rats fed a high-fat diet.
    Frier BC; Wan Z; Williams DB; Stefanson AL; Wright DC
    Am J Physiol Cell Physiol; 2012 Jun; 302(12):C1772-9. PubMed ID: 22496244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle.
    Vainshtein A; Tryon LD; Pauly M; Hood DA
    Am J Physiol Cell Physiol; 2015 May; 308(9):C710-9. PubMed ID: 25673772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity.
    Memme JM; Oliveira AN; Hood DA
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C1024-36. PubMed ID: 27122157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1.
    Boss O; Bachman E; Vidal-Puig A; Zhang CY; Peroni O; Lowell BB
    Biochem Biophys Res Commun; 1999 Aug; 261(3):870-6. PubMed ID: 10441518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha.
    Bianchi K; Vandecasteele G; Carli C; Romagnoli A; Szabadkai G; Rizzuto R
    Cell Death Differ; 2006 Apr; 13(4):586-96. PubMed ID: 16239931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive.
    Kang C; O'Moore KM; Dickman JR; Ji LL
    Free Radic Biol Med; 2009 Nov; 47(10):1394-400. PubMed ID: 19686839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle.
    Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ
    FASEB J; 2016 Feb; 30(2):959-70. PubMed ID: 26572168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis.
    Gurd BJ
    Appl Physiol Nutr Metab; 2011 Oct; 36(5):589-97. PubMed ID: 21888529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clenbuterol, a β2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle.
    Hoshino D; Yoshida Y; Holloway GP; Lally J; Hatta H; Bonen A
    Am J Physiol Regul Integr Comp Physiol; 2012 Feb; 302(3):R373-84. PubMed ID: 22071161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations.
    Irrcher I; Adhihetty PJ; Sheehan T; Joseph AM; Hood DA
    Am J Physiol Cell Physiol; 2003 Jun; 284(6):C1669-77. PubMed ID: 12734114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β
    Shimamoto S; Ijiri D; Kawaguchi M; Nakashima K; Tada O; Inoue H; Ohtsuka A
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Sep; 211():1-6. PubMed ID: 28578076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.