These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19907069)

  • 1. Terahertz response in single-walled carbon nanotube transistor: a real-time quantum dynamics simulation.
    Lu RF; Lu YP; Lee SY; Han KL; Deng WQ
    Nanotechnology; 2009 Dec; 20(50):505401. PubMed ID: 19907069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz generation and chaotic dynamics in single-walled zigzag carbon nanotubes.
    Wang C; Cao JC
    Chaos; 2009 Sep; 19(3):033136. PubMed ID: 19792016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon-nanotube spectroscopic and electronic field-effect transistor measurements: a combined approach.
    Kauffman DR; Star A
    Small; 2007 Aug; 3(8):1324-9. PubMed ID: 17603820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz response of carbon nanotube transistors.
    Kienle D; Léonard F
    Phys Rev Lett; 2009 Jul; 103(2):026601. PubMed ID: 19659227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rattling in the cage: ions as probes of sub-picosecond water network dynamics.
    Schmidt DA; Birer O; Funkner S; Born BP; Gnanasekaran R; Schwaab GW; Leitner DM; Havenith M
    J Am Chem Soc; 2009 Dec; 131(51):18512-7. PubMed ID: 19928959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths.
    Xia F; Steiner M; Lin YM; Avouris P
    Nat Nanotechnol; 2008 Oct; 3(10):609-13. PubMed ID: 18839000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant electron scattering by defects in single-walled carbon nanotubes.
    Bockrath M; Liang W; Bozovic D; Hafner JH; Lieber CM; Tinkham M; Park H
    Science; 2001 Jan; 291(5502):283-5. PubMed ID: 11209073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae.
    Lloyd-Hughes J; Scalari G; van Kolck A; Fischer M; Beck M; Faist J
    Opt Express; 2009 Sep; 17(20):18387-93. PubMed ID: 19907630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabry - Perot interference in a nanotube electron waveguide.
    Liang W; Bockrath M; Bozovic D; Hafner JH; Tinkham M; Park H
    Nature; 2001 Jun; 411(6838):665-9. PubMed ID: 11395762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface.
    Wang Y; Cui Z; Zhu D; Zhang X; Qian L
    Opt Express; 2018 Jun; 26(12):15343-15352. PubMed ID: 30114783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time detection of electron tunnelling in a quantum dot.
    Lu W; Ji Z; Pfeiffer L; West KW; Rimberg AJ
    Nature; 2003 May; 423(6938):422-5. PubMed ID: 12761544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum interference and ballistic transmission in nanotube electron waveguides.
    Kong J; Yenilmez E; Tombler TW; Kim W; Dai H; Laughlin RB; Liu L; Jayanthi CS; Wu SY
    Phys Rev Lett; 2001 Sep; 87(10):106801. PubMed ID: 11531494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range.
    Maine S; Koechlin C; Rennesson S; Jaeck J; Salort S; Chassagne B; Pardo F; Pelouard JL; Haïdar R
    Appl Opt; 2012 May; 51(15):3031-5. PubMed ID: 22614607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X; Moran-Mirabal JM; Craighead HG; McEuen PL
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driven coherent oscillations of a single electron spin in a quantum dot.
    Koppens FH; Buizert C; Tielrooij KJ; Vink IT; Nowack KC; Meunier T; Kouwenhoven LP; Vandersypen LM
    Nature; 2006 Aug; 442(7104):766-71. PubMed ID: 16915280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.