BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19907074)

  • 1. Validation of cardiac accelerometer sensor measurements.
    Remme EW; Hoff L; Halvorsen PS; Naerum E; Skulstad H; Fleischer LA; Elle OJ; Fosse E
    Physiol Meas; 2009 Dec; 30(12):1429-44. PubMed ID: 19907074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation model of cardiac three dimensional accelerometer measurements.
    Remme EW; Hoff L; Halvorsen PS; Opdahl A; Fosse E; Elle OJ
    Med Eng Phys; 2012 Sep; 34(7):990-8. PubMed ID: 22633656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurement of blood and myocardial velocity in the rat heart by phase contrast MRI using sparse q-space sampling.
    Wise RG; Al-Shafei AI; Carpenter TA; Hall LD; Huang CL
    J Magn Reson Imaging; 2005 Nov; 22(5):614-27. PubMed ID: 16193471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic gravity compensation does not increase detection of myocardial ischemia in combined accelerometer and gyro sensor measurements.
    Krogh MR; Halvorsen PS; Elle OJ; Bergsland J; Remme EW
    Sci Rep; 2019 Feb; 9(1):2671. PubMed ID: 30804438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic real-time detection of myocardial ischemia by epicardial accelerometer.
    Halvorsen PS; Remme EW; Espinoza A; Skulstad H; Lundblad R; Bergsland J; Hoff L; Imenes K; Edvardsen T; Elle OJ; Fosse E
    J Thorac Cardiovasc Surg; 2010 Apr; 139(4):1026-32. PubMed ID: 19717169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravity Compensation Method for Combined Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements.
    Krogh MR; Nghiem GM; Halvorsen PS; Elle OJ; Grymyr OJ; Hoff L; Remme EW
    Ann Biomed Eng; 2017 May; 45(5):1292-1304. PubMed ID: 28116541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures.
    Jung BA; Kreher BW; Markl M; Hennig J
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S158-64. PubMed ID: 16564182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving motion estimation by accounting for local image distortion.
    Behar V; Adam D; Lysyansky P; Friedman Z
    Ultrasonics; 2004 Oct; 43(1):57-65. PubMed ID: 15358529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating myocardial motion by MRI using tissue phase mapping.
    Jung B; Markl M; Föll D; Hennig J
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S150-7. PubMed ID: 16563784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early recognition of regional cardiac ischemia using a 3-axis accelerometer sensor.
    Elle OJ; Halvorsen S; Gulbrandsen MG; Aurdal L; Bakken A; Samset E; Dugstad H; Fosse E
    Physiol Meas; 2005 Aug; 26(4):429-40. PubMed ID: 15886438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclination measurement of human movement using a 3-D accelerometer with autocalibration.
    Luinge HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):112-21. PubMed ID: 15068194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.
    Sabatini AM
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for deriving displacement data during cyclical movement using an inertial sensor.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2005 Jul; 208(Pt 13):2503-14. PubMed ID: 15961737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of a three-axis epicardial accelerometer in detecting myocardial ischemia in cardiac surgical patients.
    Halvorsen PS; Espinoza A; Fleischer LA; Elle OJ; Hoff L; Lundblad R; Skulstad H; Edvardsen T; Ihlen H; Fosse E
    J Thorac Cardiovasc Surg; 2008 Dec; 136(6):1496-502. PubMed ID: 19114197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion prediction for computer-assisted beating heart surgery.
    Bachta W; Renaud P; Cuvillon L; Laroche E; Forgione A; Gangloff J
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2551-63. PubMed ID: 19567337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy and reproducibility of a subpixel extended phase correlation method to determine micron level displacements in the heart.
    Kelly DJ; Azeloglu EU; Kochupura PV; Sharma GS; Gaudette GR
    Med Eng Phys; 2007 Jan; 29(1):154-62. PubMed ID: 16531092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing power transfer between the human body and the environment.
    Veltink PH; Kortier H; Schepers HM
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1711-8. PubMed ID: 19237335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional quantification of cardiac surface motion: a newly developed three-dimensional digital motion-capture and reconstruction system for beating heart surgery.
    Watanabe T; Omata S; Odamura M; Okada M; Nakamura Y; Yokoyama H
    J Thorac Cardiovasc Surg; 2006 Nov; 132(5):1162-71. PubMed ID: 17059939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of ventricular wall motion using the finite element method.
    Watanabe T; Ohtake T; Kosaka N; Momose T; Nishikawa J; Iio M
    Radiat Med; 1988; 6(4):165-70. PubMed ID: 3212216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vestibulo-ocular reflex and gravity in fish.
    Takabayashi A; Iwata K; Ohmura-Iwasaki T; Mori S
    Biol Sci Space; 2004 Nov; 18(3):132-3. PubMed ID: 15858356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.