These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 19907083)
1. Measurements of reversible and irreversible inactivation processes of a redox enzyme, bilirubin oxidase, by electrochemical methods based on bioelectrocatalysis. Ikeda T; Uematsu K; Ma H; Katano H; Hibi T Anal Sci; 2009 Nov; 25(11):1283-8. PubMed ID: 19907083 [TBL] [Abstract][Full Text] [Related]
2. A bioelectrocatalysis method for the kinetic measurement of thermal inactivation of a redox enzyme, bilirubin oxidase. Ikeda T; Tatsumi H; Katano H; Wanibuchi M; Hibi T; Kajino T Anal Sci; 2008 Feb; 24(2):237-41. PubMed ID: 18270415 [TBL] [Abstract][Full Text] [Related]
3. Application of poly[oxyethylene(dimethylimino)propyl-(dimethylimino)ethylene] as enzyme stabilizer for bilirubin oxidase immobilized electrode. Katano H; Uematsu K; Hibi T; Ikeda T; Tsukatani T Anal Sci; 2009 Sep; 25(9):1077-81. PubMed ID: 19745533 [TBL] [Abstract][Full Text] [Related]
4. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria. Ivnitski D; Artyushkova K; Atanassov P Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Filip J; Andicsová-Eckstein A; Vikartovská A; Tkac J Biosens Bioelectron; 2017 Mar; 89(Pt 1):384-389. PubMed ID: 27297188 [TBL] [Abstract][Full Text] [Related]
6. Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss. Tasca F; Farias D; Castro C; Acuna-Rougier C; Antiochia R PLoS One; 2015; 10(7):e0132181. PubMed ID: 26196288 [TBL] [Abstract][Full Text] [Related]
7. Bismuth Vanadate/Bilirubin Oxidase Photo(bio)electrochemical Cells for Unbiased, Light-Triggered Electrical Power Generation. Mukha D; Cohen Y; Yehezkeli O ChemSusChem; 2020 May; 13(10):2684-2692. PubMed ID: 32067348 [TBL] [Abstract][Full Text] [Related]
8. Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases. Suraniti E; Abintou M; Durand F; Mano N Bioelectrochemistry; 2012 Dec; 88():65-9. PubMed ID: 22772078 [TBL] [Abstract][Full Text] [Related]
9. A novel electrochemical approach to the characterization of oxidoreductase reactions. Ikeda T Chem Rec; 2004; 4(3):192-203. PubMed ID: 15293339 [TBL] [Abstract][Full Text] [Related]
10. Redox potentials of the blue copper sites of bilirubin oxidases. Christenson A; Shleev S; Mano N; Heller A; Gorton L Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746 [TBL] [Abstract][Full Text] [Related]
11. Nanostructured Porous Electrodes by the Anodization of Gold for an Application as Scaffolds in Direct-electron-transfer-type Bioelectrocatalysis. Sakai K; Kitazumi Y; Shirai O; Kano K Anal Sci; 2018 Nov; 34(11):1317-1322. PubMed ID: 30101833 [TBL] [Abstract][Full Text] [Related]
12. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Lalaoui N; Le Goff A; Holzinger M; Cosnier S Chemistry; 2015 Nov; 21(47):16868-73. PubMed ID: 26449635 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase by silver ions. Makizuka T; Sowa K; Shirai O; Kitazumi Y Anal Sci; 2022 Jun; 38(6):907-912. PubMed ID: 35437692 [TBL] [Abstract][Full Text] [Related]
14. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Pinyou P; Conzuelo F; Sliozberg K; Vivekananthan J; Contin A; Pöller S; Plumeré N; Schuhmann W Bioelectrochemistry; 2015 Dec; 106(Pt A):22-7. PubMed ID: 25892686 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Dos Santos L; Climent V; Blanford CF; Armstrong FA Phys Chem Chem Phys; 2010 Nov; 12(42):13962-74. PubMed ID: 20852807 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic synthesis of polyaniline film using a copper-containing oxidoreductase: bilirubin oxidase. Aizawa M; Wang LL; Shinohara H; Ikariyama Y J Biotechnol; 1990 Jun; 14(3-4):301-9. PubMed ID: 1366908 [TBL] [Abstract][Full Text] [Related]
17. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Tsujimura S Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547 [TBL] [Abstract][Full Text] [Related]
18. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase. Filip J; Tkac J Bioelectrochemistry; 2014 Apr; 96():14-20. PubMed ID: 24361897 [TBL] [Abstract][Full Text] [Related]
19. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells. Durand F; Kjaergaard CH; Suraniti E; Gounel S; Hadt RG; Solomon EI; Mano N Biosens Bioelectron; 2012 May; 35(1):140-146. PubMed ID: 22410485 [TBL] [Abstract][Full Text] [Related]
20. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol-gel processed silicate film. Nogala W; Szot K; Burchardt M; Roelfs F; Rogalski J; Opallo M; Wittstock G Analyst; 2010 Aug; 135(8):2051-8. PubMed ID: 20532339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]