BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19907697)

  • 1. Intron sliding in tetraspanins.
    Garcia-España A; DeSalle R
    Commun Integr Biol; 2009 Sep; 2(5):394-5. PubMed ID: 19907697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intron evolution: testing hypotheses of intron evolution using the phylogenomics of tetraspanins.
    Garcia-España A; Mares R; Sun TT; Desalle R
    PLoS One; 2009; 4(3):e4680. PubMed ID: 19262691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intronization, de-intronization and intron sliding are rare in Cryptococcus.
    Roy SW
    BMC Evol Biol; 2009 Aug; 9():192. PubMed ID: 19664208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication.
    Lehmann J; Eisenhardt C; Stadler PF; Krauss V
    BMC Evol Biol; 2010 May; 10():156. PubMed ID: 20500887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intron "sliding" and the diversity of intron positions.
    Stoltzfus A; Logsdon JM; Palmer JD; Doolittle WF
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10739-44. PubMed ID: 9380704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a database containing discordant intron positions in eukaryotic genes (MIDB).
    Sakharkar MK; Tan TW; de Souza SJ
    Bioinformatics; 2001 Aug; 17(8):671-5. PubMed ID: 11524368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural organization of the 5' region of the thyroglobulin gene. Evidence for intron loss and "exonization" during evolution.
    Parma J; Christophe D; Pohl V; Vassart G
    J Mol Biol; 1987 Aug; 196(4):769-79. PubMed ID: 3681978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of introns by 'intronization' of exonic sequences.
    Irimia M; Rukov JL; Penny D; Vinther J; Garcia-Fernandez J; Roy SW
    Trends Genet; 2008 Aug; 24(8):378-81. PubMed ID: 18597887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypervariable and highly divergent intron-exon organizations in the chordate Oikopleura dioica.
    Edvardsen RB; Lerat E; Maeland AD; Flåt M; Tewari R; Jensen MF; Lehrach H; Reinhardt R; Seo HC; Chourrout D
    J Mol Evol; 2004 Oct; 59(4):448-57. PubMed ID: 15638456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates.
    Sela N; Kim E; Ast G
    Genome Biol; 2010; 11(6):R59. PubMed ID: 20525173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and evolution of a new retained intron on the vulcan gene in Drosophila melanogaster subgroup species.
    Zhan L; Meng Q; Chen R; Yue Y; Jin Y
    Genome; 2014 Oct; 57(10):567-72. PubMed ID: 25723758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence.
    Akkuratov EE; Walters L; Saha-Mandal A; Khandekar S; Crawford E; Zirbel CL; Leisner S; Prakash A; Fedorova L; Fedorov A
    Gene; 2014 Sep; 548(1):81-90. PubMed ID: 25014137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering Intron Gain Events in Humans through Large-Scale Evolutionary Comparisons.
    Hoh C; Salzberg SL
    bioRxiv; 2024 May; ():. PubMed ID: 38746259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanism for a single nucleotide intron shift.
    Fekete E; Flipphi M; Ág N; Kavalecz N; Cerqueira G; Scazzocchio C; Karaffa L
    Nucleic Acids Res; 2017 Sep; 45(15):9085-9092. PubMed ID: 28595329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing: a missing piece in the puzzle of intron gain.
    Tarrío R; Ayala FJ; Rodríguez-Trelles F
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7223-8. PubMed ID: 18463286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary diversity of vertebrate small heat shock proteins.
    Franck E; Madsen O; van Rheede T; Ricard G; Huynen MA; de Jong WW
    J Mol Evol; 2004 Dec; 59(6):792-805. PubMed ID: 15599511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution.
    Rogozin IB; Wolf YI; Sorokin AV; Mirkin BG; Koonin EV
    Curr Biol; 2003 Sep; 13(17):1512-7. PubMed ID: 12956953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective constraints on intron evolution in Drosophila.
    Parsch J
    Genetics; 2003 Dec; 165(4):1843-51. PubMed ID: 14704170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.