BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19907713)

  • 1. Melanopsin-mediated light-sensing in amphioxus: a glimpse of the microvillar photoreceptor lineage within the deuterostomia.
    Nasi E; del Pilar Gomez M
    Commun Integr Biol; 2009 Sep; 2(5):441-3. PubMed ID: 19907713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-transduction in melanopsin-expressing photoreceptors of Amphioxus.
    Gomez Mdel P; Angueyra JM; Nasi E
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):9081-6. PubMed ID: 19451628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The light-sensitive conductance of melanopsin-expressing Joseph and Hesse cells in amphioxus.
    Pulido C; Malagón G; Ferrer C; Chen JK; Angueyra JM; Nasi E; Gomez Mdel P
    J Gen Physiol; 2012 Jan; 139(1):19-30. PubMed ID: 22200946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade.
    Angueyra JM; Pulido C; Malagón G; Nasi E; Gomez Mdel P
    PLoS One; 2012; 7(1):e29813. PubMed ID: 22235344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the determinants of light sensitivity in amphioxus microvillar photoreceptors: possible evolutionary implications for melanopsin signaling.
    Ferrer C; Malagón G; Gomez Mdel P; Nasi E
    J Neurosci; 2012 Dec; 32(50):17977-87. PubMed ID: 23238714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus.
    Peinado G; Osorno T; Gomez Mdel P; Nasi E
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7845-50. PubMed ID: 26056310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphioxus photoreceptors - insights into the evolution of vertebrate opsins, vision and circadian rhythmicity.
    Pergner J; Kozmik Z
    Int J Dev Biol; 2017; 61(10-11-12):665-681. PubMed ID: 29319115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells.
    Koyanagi M; Kubokawa K; Tsukamoto H; Shichida Y; Terakita A
    Curr Biol; 2005 Jun; 15(11):1065-9. PubMed ID: 15936279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of phototransduction, vertebrate photoreceptors and retina.
    Lamb TD
    Prog Retin Eye Res; 2013 Sep; 36():52-119. PubMed ID: 23792002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphioxus: beginning of vertebrate and end of invertebrate type GnRH receptor lineage.
    Tello JA; Sherwood NM
    Endocrinology; 2009 Jun; 150(6):2847-56. PubMed ID: 19264870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin.
    Koyanagi M; Terakita A
    Photochem Photobiol; 2008; 84(4):1024-30. PubMed ID: 18513236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Clearing and Light Sheet Microscopy Imaging of Amphioxus.
    Machacova S; Chmelova H; Vavrova A; Kozmik Z; Kozmikova I
    Front Cell Dev Biol; 2021; 9():702986. PubMed ID: 34381783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the TLR Family in
    Ji J; Ramos-Vicente D; Navas-Pérez E; Herrera-Úbeda C; Lizcano JM; Garcia-Fernàndez J; Escrivà H; Bayés À; Roher N
    Front Immunol; 2018; 9():2525. PubMed ID: 30450099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary history of the extant amphioxus lineage with shallow-branching diversification.
    Igawa T; Nozawa M; Suzuki DG; Reimer JD; Morov AR; Wang Y; Henmi Y; Yasui K
    Sci Rep; 2017 Apr; 7(1):1157. PubMed ID: 28442709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopsin--shedding light on the elusive circadian photopigment.
    Brown RL; Robinson PR
    Chronobiol Int; 2004 Mar; 21(2):189-204. PubMed ID: 15332341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreceptor processes: some problems and perspectives.
    Goldsmith TH
    J Exp Zool; 1975 Oct; 194(1):89-101. PubMed ID: 453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin.
    Terakita A; Tsukamoto H; Koyanagi M; Sugahara M; Yamashita T; Shichida Y
    J Neurochem; 2008 May; 105(3):883-90. PubMed ID: 18088357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics reveal ancient forms of stanniocalcin in amphioxus and tunicate.
    Roch GJ; Sherwood NM
    Integr Comp Biol; 2010 Jul; 50(1):86-97. PubMed ID: 21558190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain.
    Holland LZ; Short S
    Brain Behav Evol; 2008; 72(2):91-105. PubMed ID: 18836256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors.
    Piccoli G; Del Pilar Gomez M; Nasi E
    J Physiol; 2002 Sep; 543(Pt 2):481-94. PubMed ID: 12205183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.