BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19907977)

  • 1. Culture and preparation of human embryonic stem cells for proteomics-based applications.
    King CC
    Methods Mol Biol; 2010; 584():151-77. PubMed ID: 19907977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of microRNAs regulated by activin A in human embryonic stem cells.
    Tsai ZY; Singh S; Yu SL; Kao LP; Chen BZ; Ho BC; Yang PC; Li SS
    J Cell Biochem; 2010 Jan; 109(1):93-102. PubMed ID: 19885849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic comparison of human embryonic stem cells with their differentiated fibroblasts: Identification of 206 genes targeted by hES cell-specific microRNAs.
    Tsai ZY; Chou CH; Lu CY; Singh S; Yu SL; Li SS
    Kaohsiung J Med Sci; 2011 Aug; 27(8):299-306. PubMed ID: 21802640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method.
    Ellerström C; Hyllner J; Strehl R
    Methods Mol Biol; 2010; 584():121-34. PubMed ID: 19907975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of TGFbeta and myofibroblasts in supporting the propagation of human embryonic stem cells in vitro.
    Kumar N; Pethe P; Bhartiya D
    Int J Dev Biol; 2010; 54(8-9):1329-36. PubMed ID: 20712005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media.
    Prowse AB; McQuade LR; Bryant KJ; Marcal H; Gray PP
    J Proteome Res; 2007 Sep; 6(9):3796-807. PubMed ID: 17655345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro neural differentiation of human embryonic stem cells using a low-density mouse embryonic fibroblast feeder protocol.
    Ozolek JA; Jane EP; Esplen JE; Petrosko P; Wehn AK; Erb TM; Mucko SE; Cote LC; Sammak PJ
    Methods Mol Biol; 2010; 584():71-95. PubMed ID: 19907972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome alteration of early-stage differentiation of mouse embryonic stem cells into hepatocyte-like cells.
    Li Y; Kang X; Guo K; Li X; Gao D; Cui J; Sun L; Yang P; Liu Y
    Electrophoresis; 2009 May; 30(9):1431-40. PubMed ID: 19424999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures.
    Passier R; Oostwaard DW; Snapper J; Kloots J; Hassink RJ; Kuijk E; Roelen B; de la Riviere AB; Mummery C
    Stem Cells; 2005; 23(6):772-80. PubMed ID: 15917473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications.
    Lebkowski JS; Gold J; Xu C; Funk W; Chiu CP; Carpenter MK
    Cancer J; 2001; 7 Suppl 2():S83-93. PubMed ID: 11777269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analysis of the culture environment supporting undifferentiated mouse embryonic stem and germ cell growth.
    Buhr N; Carapito C; Schaeffer C; Hovasse A; Van Dorsselaer A; Viville S
    Electrophoresis; 2007 May; 28(10):1615-23. PubMed ID: 17436335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion of pluripotent human embryonic stem cells on human feeders.
    Choo AB; Padmanabhan J; Chin AC; Oh SK
    Biotechnol Bioeng; 2004 Nov; 88(3):321-31. PubMed ID: 15486939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome.
    Arrell DK; Niederländer NJ; Faustino RS; Behfar A; Terzic A
    Stem Cells; 2008 Feb; 26(2):387-400. PubMed ID: 17991915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic identification of RREB1, PDE6B, and CD209 up-regulated in primitive gut tube differentiated from human embryonic stem cells.
    Lee DH; Ko JJ; Ji YG; Chung HM; Hwang T
    Pancreas; 2012 Jan; 41(1):65-73. PubMed ID: 21792086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of human embryonic stem cell derivation.
    Pruksananonda K; Rungsiwiwut R; Numchaisrika P; Ahnonkitpanich V; Virutamasen P
    J Med Assoc Thai; 2009 Apr; 92(4):443-50. PubMed ID: 19374291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved membrane proteomics coverage of human embryonic stem cells by peptide IPG-IEF.
    McQuade LR; Schmidt U; Pascovici D; Stojanov T; Baker MS
    J Proteome Res; 2009 Dec; 8(12):5642-9. PubMed ID: 19899800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics-based strategy to identify biomarkers and pharmacological targets in leukemias with t(4;11) translocations.
    Yocum AK; Busch CM; Felix CA; Blair IA
    J Proteome Res; 2006 Oct; 5(10):2743-53. PubMed ID: 17022645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoflourescence and mRNA analysis of human embryonic stem cells (hESCs) grown under feeder-free conditions.
    Awan A; Oliveri RS; Jensen PL; Christensen ST; Andersen CY
    Methods Mol Biol; 2010; 584():195-210. PubMed ID: 19907979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of mouse and human feeder cells for human embryonic stem cells.
    Eiselleova L; Peterkova I; Neradil J; Slaninova I; Hampl A; Dvorak P
    Int J Dev Biol; 2008; 52(4):353-63. PubMed ID: 18415935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteome and transcriptome analyses of embryonic stem cells during embryoid body-based differentiation.
    Fathi A; Pakzad M; Taei A; Brink TC; Pirhaji L; Ruiz G; Sharif Tabe Bordbar M; Gourabi H; Adjaye J; Baharvand H; Salekdeh GH
    Proteomics; 2009 Nov; 9(21):4859-70. PubMed ID: 19862760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.