These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 19908200)
1. Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans. Moreno I; Martinez-Esparza M; Laforet LC; Sentandreu R; Ernst JF; Valentin E Yeast; 2010 Feb; 27(2):77-87. PubMed ID: 19908200 [TBL] [Abstract][Full Text] [Related]
2. Global transcriptional profiling of Candida albicans cwt1 null mutant. Moreno I; Castillo L; Sentandreu R; Valentin E Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235 [TBL] [Abstract][Full Text] [Related]
3. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Sandini S; La Valle R; De Bernardis F; Macrì C; Cassone A Cell Microbiol; 2007 May; 9(5):1223-38. PubMed ID: 17217426 [TBL] [Abstract][Full Text] [Related]
4. Pga13 in Candida albicans is localized in the cell wall and influences cell surface properties, morphogenesis and virulence. Gelis S; de Groot PW; Castillo L; Moragues MD; Sentandreu R; Gómez MM; Valentín E Fungal Genet Biol; 2012 Apr; 49(4):322-31. PubMed ID: 22343036 [TBL] [Abstract][Full Text] [Related]
5. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Zheng X; Wang Y; Wang Y EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502 [TBL] [Abstract][Full Text] [Related]
6. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067 [TBL] [Abstract][Full Text] [Related]
7. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Liu X; Nie X; Ding Y; Chen J Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. Hayek P; Dib L; Yazbeck P; Beyrouthy B; Khalaf RA Microbiol Res; 2010 Mar; 165(3):250-8. PubMed ID: 19616419 [TBL] [Abstract][Full Text] [Related]
9. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model. Song W; Wang H; Chen J FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158 [TBL] [Abstract][Full Text] [Related]
10. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Uppuluri P; Chaffin WL Mol Microbiol; 2007 Jun; 64(6):1572-86. PubMed ID: 17555439 [TBL] [Abstract][Full Text] [Related]
11. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Lotz H; Sohn K; Brunner H; Muhlschlegel FA; Rupp S Eukaryot Cell; 2004 Jun; 3(3):776-84. PubMed ID: 15189998 [TBL] [Abstract][Full Text] [Related]
12. CRZ1, a target of the calcineurin pathway in Candida albicans. Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987 [TBL] [Abstract][Full Text] [Related]
13. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477 [TBL] [Abstract][Full Text] [Related]
14. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003 [TBL] [Abstract][Full Text] [Related]
15. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance. Dib L; Hayek P; Sadek H; Beyrouthy B; Khalaf RA Med Sci Monit; 2008 Jun; 14(6):BR113-121. PubMed ID: 18509269 [TBL] [Abstract][Full Text] [Related]
16. Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. Niimi K; Monk BC; Hirai A; Hatakenaka K; Umeyama T; Lamping E; Maki K; Tanabe K; Kamimura T; Ikeda F; Uehara Y; Kano R; Hasegawa A; Cannon RD; Niimi M J Antimicrob Chemother; 2010 May; 65(5):842-52. PubMed ID: 20233776 [TBL] [Abstract][Full Text] [Related]
17. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Kumamoto CA; Vinces MD Cell Microbiol; 2005 Nov; 7(11):1546-54. PubMed ID: 16207242 [TBL] [Abstract][Full Text] [Related]
19. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. Fekete A; Emri T; Gyetvai A; Gazdag Z; Pesti M; Varga Z; Balla J; Cserháti C; Emody L; Gergely L; Pócsi I FEMS Yeast Res; 2007 Sep; 7(6):834-47. PubMed ID: 17498215 [TBL] [Abstract][Full Text] [Related]
20. Corneal virulence of Candida albicans strains deficient in Tup1-regulated genes. Jackson BE; Mitchell BM; Wilhelmus KR Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2535-9. PubMed ID: 17525181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]