These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19908356)
1. Optimization methods for selecting founder individuals for captive breeding or reintroduction of endangered species. Miller W; Wright SJ; Zhang Y; Schuster SC; Hayes VM Pac Symp Biocomput; 2010; ():43-53. PubMed ID: 19908356 [TBL] [Abstract][Full Text] [Related]
2. Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Jamieson IG Conserv Biol; 2011 Feb; 25(1):115-23. PubMed ID: 20825445 [TBL] [Abstract][Full Text] [Related]
3. Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species. Willoughby JR; Ivy JA; Lacy RC; Doyle JM; DeWoody JA PLoS One; 2017; 12(4):e0175996. PubMed ID: 28423000 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the performance of captive breeding techniques for conservation hatcheries: a case study of the delta smelt captive breeding program. Fisch KM; Ivy JA; Burton RS; May B J Hered; 2013; 104(1):92-104. PubMed ID: 23125405 [TBL] [Abstract][Full Text] [Related]
5. Initial founders of captive populations are genetically representative of natural populations in critically endangered dusky gopher frogs, Lithobates sevosus. Hinkson KM; Henry NL; Hensley NM; Richter SC Zoo Biol; 2016 Sep; 35(5):378-384. PubMed ID: 27383748 [TBL] [Abstract][Full Text] [Related]
7. swinger: a user-friendly computer program to establish captive breeding groups that minimize relatedness without pedigree information. Sandoval-Castillo J; Attard CR; Marri S; Brauer CJ; Möller LM; Beheregaray LB Mol Ecol Resour; 2017 Mar; 17(2):278-287. PubMed ID: 27754599 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide SNP and STR discovery in the Japanese crested ibis and genetic diversity among founders of the Japanese population. Taniguchi Y; Matsuda H; Yamada T; Sugiyama T; Homma K; Kaneko Y; Yamagishi S; Iwaisaki H PLoS One; 2013; 8(8):e72781. PubMed ID: 23991150 [TBL] [Abstract][Full Text] [Related]
9. Conservation genomics in the fight to help the recovery of the critically endangered Siamese crocodile Crocodylus siamensis. Chattopadhyay B; Garg KM; Soo YJ; Low GW; Frechette JL; Rheindt FE Mol Ecol; 2019 Mar; 28(5):936-950. PubMed ID: 30659682 [TBL] [Abstract][Full Text] [Related]
10. Conservation genetics and population history of the threatened European mink Mustela lutreola, with an emphasis on the west European population. Michaux JR; Hardy OJ; Justy F; Fournier P; Kranz A; Cabria M; Davison A; Rosoux R; Libois R Mol Ecol; 2005 Jul; 14(8):2373-88. PubMed ID: 15969721 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial DNA genetic diversity of black muntjac (Muntiacus crinifrons), an endangered species endemic to China. Wu HL; Fang SG Biochem Genet; 2005 Aug; 43(7-8):407-16. PubMed ID: 16187164 [TBL] [Abstract][Full Text] [Related]
12. Genetic assessment for the endangered black lion tamarin Leontopithecus chrysopygus (Mikan, 1823), Callitrichidae, Primates. Ayala-Burbano PA; Caldano L; Junior PMG; Pissinatti A; Marques MC; Wormell D; Domingues de Freitas P Am J Primatol; 2017 Dec; 79(12):. PubMed ID: 29095510 [TBL] [Abstract][Full Text] [Related]
13. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Shan L; Hu Y; Zhu L; Yan L; Wang C; Li D; Jin X; Zhang C; Wei F Mol Biol Evol; 2014 Oct; 31(10):2663-71. PubMed ID: 25015646 [TBL] [Abstract][Full Text] [Related]
14. Selective recovery of founder genetic diversity in aquacultural broodstocks and captive, endangered fish populations. Doyle RW; Perez-Enriquez R; Takagi M; Taniguchi N Genetica; 2001; 111(1-3):291-304. PubMed ID: 11841174 [TBL] [Abstract][Full Text] [Related]
15. Reintroduction of the European Capercaillie from the Capercaillie Breeding Centre in Wisła Forest District: Genetic Assessments of Captive and Reintroduced Populations. Strzała T; Kowalczyk A; Łukaszewicz E PLoS One; 2015; 10(12):e0145433. PubMed ID: 26682897 [TBL] [Abstract][Full Text] [Related]
16. Genetic effects of long-term captive breeding on the endangered pygmy hog. Purohit D; Manu S; Ram MS; Sharma S; Patnaik HC; Deka PJ; Narayan G; Umapathy G PeerJ; 2021; 9():e12212. PubMed ID: 34707930 [TBL] [Abstract][Full Text] [Related]
17. Methods and prospects for using molecular data in captive breeding programs: an empirical example using parma wallabies (Macropus parma). Ivy JA; Miller A; Lacy RC; Dewoody JA J Hered; 2009; 100(4):441-54. PubMed ID: 19423700 [TBL] [Abstract][Full Text] [Related]
18. Application of DNA fingerprinting to the recovery program of the endangered Puerto Rican parrot. Brock MK; White BN Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11121-5. PubMed ID: 1454788 [TBL] [Abstract][Full Text] [Related]
19. A genetic diversity comparison between captive individuals and wild individuals of Elliot's Pheasant (Syrmaticus ellioti) using mitochondrial DNA. Jiang PP; Lang QL; Fang SG; Ding P; Chen LM J Zhejiang Univ Sci B; 2005 May; 6(5):413-7. PubMed ID: 15822157 [TBL] [Abstract][Full Text] [Related]
20. Measuring the genetic diversity of Arabian Oryx using microsatellite markers: implication for captive breeding. Arif IA; Khan HA; Shobrak M; Homaidan AA; Sadoon MA; Farhan AH Genes Genet Syst; 2010 Apr; 85(2):141-5. PubMed ID: 20558900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]