BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19908367)

  • 1. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An iterative data mining approach for mining overlapping coexpression patterns in noisy gene expression data.
    Ma PC; Chan KC
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):252-8. PubMed ID: 19605326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new geometric biclustering algorithm based on the Hough transform for analysis of large-scale microarray data.
    Zhao H; Liew AW; Xie X; Yan H
    J Theor Biol; 2008 Mar; 251(2):264-74. PubMed ID: 18199458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forests-based differential analysis of gene sets for gene expression data.
    Hsueh HM; Zhou DW; Tsai CA
    Gene; 2013 Apr; 518(1):179-86. PubMed ID: 23219997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards patterns tree of gene coexpression in eukaryotic species.
    Wang H; Wang Q; Li X; Shen B; Ding M; Shen Z
    Bioinformatics; 2008 Jun; 24(11):1367-73. PubMed ID: 18407921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic comparison and evaluation of biclustering methods for gene expression data.
    Prelić A; Bleuler S; Zimmermann P; Wille A; Bühlmann P; Gruissem W; Hennig L; Thiele L; Zitzler E
    Bioinformatics; 2006 May; 22(9):1122-9. PubMed ID: 16500941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph-based consensus clustering for class discovery from gene expression data.
    Yu Z; Wong HS; Wang H
    Bioinformatics; 2007 Nov; 23(21):2888-96. PubMed ID: 17872912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.
    Omranian N; Mueller-Roeber B; Nikoloski Z
    Mol Biosyst; 2012 Apr; 8(4):1121-7. PubMed ID: 22327945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery.
    Grate LR
    BMC Bioinformatics; 2005 Apr; 6():97. PubMed ID: 15826317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a Gibbs sampler method for model-based clustering of gene expression data.
    Joshi A; Van de Peer Y; Michoel T
    Bioinformatics; 2008 Jan; 24(2):176-83. PubMed ID: 18033794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining patterns in disease classification forests.
    Hu H
    J Biomed Inform; 2010 Oct; 43(5):820-7. PubMed ID: 20601123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis.
    Clarke C; Madden SF; Doolan P; Aherne ST; Joyce H; O'Driscoll L; Gallagher WM; Hennessy BT; Moriarty M; Crown J; Kennedy S; Clynes M
    Carcinogenesis; 2013 Oct; 34(10):2300-8. PubMed ID: 23740839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis.
    Barriot R; Sherman DJ; Dutour I
    BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining subspace clusters from DNA microarray data using large itemset techniques.
    Chang YI; Chen JR; Tsai YC
    J Comput Biol; 2009 May; 16(5):745-68. PubMed ID: 19432542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biologically inspired measure for coexpression analysis.
    Bandyopadhyay S; Bhattacharyya M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):929-42. PubMed ID: 21566252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FM-test: a fuzzy-set-theory-based approach to differential gene expression data analysis.
    Liang LR; Lu S; Wang X; Lu Y; Mandal V; Patacsil D; Kumar D
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S7. PubMed ID: 17217525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient mining differential co-expression biclusters in microarray datasets.
    Wang M; Shang X; Li X; Liu W; Li Z
    Gene; 2013 Apr; 518(1):59-69. PubMed ID: 23276708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for generalized subspace pattern mining in high-dimensional datasets.
    Curry EW
    BMC Bioinformatics; 2014 Nov; 15(1):355. PubMed ID: 25413436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.