BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19908383)

  • 1. Improving the prediction of pharmacogenes using text-derived drug-gene relationships.
    Garten Y; Tatonetti NP; Altman RB
    Pac Symp Biocomput; 2010; ():305-14. PubMed ID: 19908383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining heterogenous data for prediction of disease related and pharmacogenes.
    Funk CS; Hunter LE; Cohen KB
    Pac Symp Biocomput; 2014; ():328-39. PubMed ID: 24297559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking gene-drug relationships in biomedical literature using Latent Dirichlet Allocation.
    Wu Y; Liu M; Zheng WJ; Zhao Z; Xu H
    Pac Symp Biocomput; 2012; ():422-33. PubMed ID: 22174297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning the Structure of Biomedical Relationships from Unstructured Text.
    Percha B; Altman RB
    PLoS Comput Biol; 2015 Jul; 11(7):e1004216. PubMed ID: 26219079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PGxMine: Text mining for curation of PharmGKB.
    Lever J; Barbarino JM; Gong L; Huddart R; Sangkuhl K; Whaley R; Whirl-Carrillo M; Woon M; Klein TE; Altman RB
    Pac Symp Biocomput; 2020; 25():611-622. PubMed ID: 31797632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network.
    Mayers M; Li TS; Queralt-Rosinach N; Su AI
    BMC Bioinformatics; 2019 Dec; 20(1):653. PubMed ID: 31829175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.
    Bravo À; Piñero J; Queralt-Rosinach N; Rautschka M; Furlong LI
    BMC Bioinformatics; 2015 Feb; 16():55. PubMed ID: 25886734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation mining experiments in the pharmacogenomics domain.
    Rinaldi F; Schneider G; Clematide S
    J Biomed Inform; 2012 Oct; 45(5):851-61. PubMed ID: 22580177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and explanation of drug-drug interactions via text mining.
    Percha B; Garten Y; Altman RB
    Pac Symp Biocomput; 2012; ():410-21. PubMed ID: 22174296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database.
    Davis AP; Wiegers TC; Johnson RJ; Lay JM; Lennon-Hopkins K; Saraceni-Richards C; Sciaky D; Murphy CG; Mattingly CJ
    PLoS One; 2013; 8(4):e58201. PubMed ID: 23613709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of genotype-phenotype-drug relationships from text: from entity recognition to bioinformatics application.
    Coulet A; Shah N; Hunter L; Barral C; Altman RB
    Pac Symp Biocomput; 2010; ():485-7. PubMed ID: 19904832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A knowledge-driven conditional approach to extract pharmacogenomics specific drug-gene relationships from free text.
    Xu R; Wang Q
    J Biomed Inform; 2012 Oct; 45(5):827-34. PubMed ID: 22561026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iterative searching and ranking algorithm for prioritising pharmacogenomics genes.
    Xu R; Wang Q
    Int J Comput Biol Drug Des; 2013; 6(1-2):18-31. PubMed ID: 23428471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward creation of a cancer drug toxicity knowledge base: automatically extracting cancer drug-side effect relationships from the literature.
    Xu R; Wang Q
    J Am Med Inform Assoc; 2014; 21(1):90-6. PubMed ID: 23686935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine.
    Islamaj Dogan R; Kim S; Chatr-Aryamontri A; Wei CH; Comeau DC; Antunes R; Matos S; Chen Q; Elangovan A; Panyam NC; Verspoor K; Liu H; Wang Y; Liu Z; Altinel B; Hüsünbeyi ZM; Özgür A; Fergadis A; Wang CK; Dai HJ; Tran T; Kavuluru R; Luo L; Steppi A; Zhang J; Qu J; Lu Z
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30689846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontology-based knowledge discovery in pharmacogenomics.
    Coulet A; Smaïl-Tabbone M; Napoli A; Devignes MD
    Adv Exp Med Biol; 2011; 696():357-66. PubMed ID: 21431576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic identification of pharmacogenomics information from clinical trials.
    Li J; Lu Z
    J Biomed Inform; 2012 Oct; 45(5):870-8. PubMed ID: 22546622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-supervised approach to extract pharmacogenomics-specific drug-gene pairs from biomedical literature for personalized medicine.
    Xu R; Wang Q
    J Biomed Inform; 2013 Aug; 46(4):585-93. PubMed ID: 23570835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using PharmGKB to train text mining approaches for identifying potential gene targets for pharmacogenomic studies.
    Pakhomov S; McInnes BT; Lamba J; Liu Y; Melton GB; Ghodke Y; Bhise N; Lamba V; Birnbaum AK
    J Biomed Inform; 2012 Oct; 45(5):862-9. PubMed ID: 22564551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text.
    Garten Y; Altman RB
    BMC Bioinformatics; 2009 Feb; 10 Suppl 2(Suppl 2):S6. PubMed ID: 19208194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.