These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19908596)

  • 41. Solids retention time dependent, tunable diatom hierarchical micro/nanostructures and their effect on nutrient removal.
    Li Y; Zhang C; He X; Hu Z
    Water Res; 2022 Jun; 216():118346. PubMed ID: 35358880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amine-functionalized diatom frustules: a platform for specific and sensitive detection of nitroaromatic explosive derivative.
    Selvaraj V; Thomas N; Anthuvan AJ; Nagamony P; Chinnuswamy V
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20540-20549. PubMed ID: 29243153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photonic crystal enhanced fluorescence immunoassay on diatom biosilica.
    Squire K; Kong X; LeDuff P; Rorrer GL; Wang AX
    J Biophotonics; 2018 Oct; 11(10):e201800009. PubMed ID: 29767428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visualization of the internal structure of Didymosphenia geminata frustules using nano X-ray tomography.
    Zgłobicka I; Li Q; Gluch J; Płocińska M; Noga T; Dobosz R; Szoszkiewicz R; Witkowski A; Zschech E; Kurzydłowski KJ
    Sci Rep; 2017 Aug; 7(1):9086. PubMed ID: 28831062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications.
    Marchetti A; Cassar N
    Geobiology; 2009 Sep; 7(4):419-31. PubMed ID: 19659798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment.
    Zhen L; Ford N; Gale DK; Roesijadi G; Rorrer GL
    Biosens Bioelectron; 2016 May; 79():742-8. PubMed ID: 26774089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous graphene as the ultimate membrane for gas separation.
    Jiang DE; Cooper VR; Dai S
    Nano Lett; 2009 Dec; 9(12):4019-24. PubMed ID: 19995080
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulation study on the translocation of polymer chains through nanopores.
    Chen YC; Wang C; Luo MB
    J Chem Phys; 2007 Jul; 127(4):044904. PubMed ID: 17672722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Marine diatoms as optical biosensors.
    De Stefano L; Rotiroti L; De Stefano M; Lamberti A; Lettieri S; Setaro A; Maddalena P
    Biosens Bioelectron; 2009 Feb; 24(6):1580-4. PubMed ID: 18809311
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dehydration and ionic conductance quantization in nanopores.
    Zwolak M; Wilson J; Di Ventra M
    J Phys Condens Matter; 2010 Nov; 22(45):454126. PubMed ID: 21152075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa.
    De Stefano M; De Stefano L
    J Nanosci Nanotechnol; 2005 Jan; 5(1):15-24. PubMed ID: 15762156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrafast optical Kerr effect spectroscopy of water confined in nanopores of the gelatin gel.
    Ratajska-Gadomska B; Bialkowski B; Gadomski W; Radzewicz C
    J Chem Phys; 2007 May; 126(18):184708. PubMed ID: 17508825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A phase separation model for the nanopatterning of diatom biosilica.
    Sumper M
    Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient.
    Wanunu M; Morrison W; Rabin Y; Grosberg AY; Meller A
    Nat Nanotechnol; 2010 Feb; 5(2):160-5. PubMed ID: 20023645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prospects of manipulating diatom silica nanostructure.
    Hildebrand M
    J Nanosci Nanotechnol; 2005 Jan; 5(1):146-57. PubMed ID: 15762173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of diatom pore-size on the structures and extensibilities of single mucilage molecules.
    Sanka I; Suyono EA; Alam P
    Carbohydr Res; 2017 Aug; 448():35-42. PubMed ID: 28578200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prevalence of diatom frustules in non-vegetarian foodstuffs and its implications in interpreting identification of diatom frustules in drowning cases.
    Yen LY; Jayaprakash PT
    Forensic Sci Int; 2007 Jul; 170(1):1-7. PubMed ID: 17023133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interfacial interactions of glutamate, water and ions with carbon nanopore evaluated by molecular dynamics simulations.
    Cory SM; Liu Y; Glavinović MI
    Biochim Biophys Acta; 2007 Sep; 1768(9):2319-41. PubMed ID: 17631857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Addressed immobilization of biofunctionalized diatoms on electrodes by gold electrodeposition.
    Leonardo S; Garibo D; Fernández-Tejedor M; O'Sullivan CK; Campàs M
    Biofabrication; 2017 Mar; 9(1):015027. PubMed ID: 28332478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.