These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19908690)

  • 1. Deposition of palladium nanoparticles on self-assembled, zinc-induced tubulin macrotubes and sheets.
    Behrens S; Habicht W; Wenzel W; Böhm KJ
    J Nanosci Nanotechnol; 2009 Dec; 9(12):6858-65. PubMed ID: 19908690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium nanoparticles formed on titanium silicate ETS-10.
    Lin CC; Danaie M; Mitlin D; Kuznicki SM
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2537-9. PubMed ID: 21449420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes.
    Piao Y; Jang Y; Shokouhimehr M; Lee IS; Hyeon T
    Small; 2007 Feb; 3(2):255-60. PubMed ID: 17230590
    [No Abstract]   [Full Text] [Related]  

  • 4. Formation of palladium nanoparticles in poly (o-methoxyaniline) macromolecule fibers: an in-situ chemical synthesis method.
    Mallick K; Witcomb MJ; Scurrell MS
    Eur Phys J E Soft Matter; 2006 Feb; 19(2):149-54. PubMed ID: 16525766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature.
    Xia M; Zhang Q; Li H; Dai G; Yu H; Wang T; Zou B; Wang Y
    Nanotechnology; 2009 Feb; 20(5):055605. PubMed ID: 19417352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The large-scale synthesis and growth mechanism of II-B metal nanosponges through a vacuum vapor deposition route.
    Wang Q; Chen G; Zhou N
    Nanotechnology; 2009 Feb; 20(8):085602. PubMed ID: 19417450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-layer core/shell structure in Au-Pd bimetallic nanoparticles.
    Ferrer D; Torres-Castro A; Gao X; Sepúlveda-Guzmán S; Ortiz-Méndez U; José-Yacamán M
    Nano Lett; 2007 Jun; 7(6):1701-5. PubMed ID: 17497821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ observation of silver nanoparticle ink at high temperature.
    Yonezawa T
    Biomed Mater Eng; 2009; 19(1):29-34. PubMed ID: 19458443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and composition dependent structural evolution of AgPd bimetallic nanoparticle: phase diagram of (AgPd)151 nanoparticle.
    Kim HY; Kim DH; Lee HM
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2251-5. PubMed ID: 21449376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrahedral zinc blende tin sulfide nano- and microcrystals.
    Greyson EC; Barton JE; Odom TW
    Small; 2006 Mar; 2(3):368-71. PubMed ID: 17193052
    [No Abstract]   [Full Text] [Related]  

  • 11. Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order.
    Bliznyuk V; Singamaneni S; Sahoo S; Polisetty S; He X; Binek Ch
    Nanotechnology; 2009 Mar; 20(10):105606. PubMed ID: 19417526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteroepitaxial growth of nanoscale oxide shell/fiber superstructures by mild hydrothermal processes.
    Chen CH; Jin L; Espinal AE; Firliet BT; Xu L; Aindow M; Joesten R; Suib SL
    Small; 2010 May; 6(9):988-92. PubMed ID: 20440703
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of zinc oxide nanotetrapods and nanorods by thermal evaporation without catalysis.
    Singh J; Tiwari RS; Srivastava ON
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1783-6. PubMed ID: 17654939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical nanostructures of PbTiO3 through mesocrystal formation.
    Wang G; Saeterli R; Rorvik PM; van Helvoort A; Holmestad R; Grande T; Einarsrud MA
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2538-41. PubMed ID: 17663279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SERS-active nanocrystalline pd substrate and its nanopatterning leading to biochip fabrication.
    Bhuvana T; Kulkarni GU
    Small; 2008 May; 4(5):670-6. PubMed ID: 18491365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled arrangement of nanoparticle arrays in block-copolymer domains.
    Haryono A; Binder WH
    Small; 2006 May; 2(5):600-11. PubMed ID: 17193094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of single-crystalline Zn metal nanowires utilizing cold-wall physical vapor deposition.
    Kast M; Schroeder P; Hyun YJ; Pongratz P; Bruückl H
    Nano Lett; 2007 Aug; 7(8):2540-4. PubMed ID: 17625904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles.
    Ito D; Jespersen ML; Hutchison JE
    ACS Nano; 2008 Oct; 2(10):2001-6. PubMed ID: 19206444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new route to the production and nanoscale patterning of highly smooth, ultrathin zirconium oxide films.
    Watson SM; Coleman KS; Chakraborty AK
    ACS Nano; 2008 Apr; 2(4):643-50. PubMed ID: 19206594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stability and functionality of chemically crosslinked microtubules.
    Boal AK; Tellez H; Rivera SB; Miller NE; Bachand GD; Bunker BC
    Small; 2006 Jun; 2(6):793-803. PubMed ID: 17193124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.