BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19908739)

  • 1. Charge retention of self-assembled ferredoxin monolayer by the reduction-oxidation control for biomemory device.
    Nam YS; Kim SU; Lee T; Kang DY; Min J; Choi JW
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7113-7. PubMed ID: 19908739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferredoxin molecular thin film with intrinsic switching mechanism for biomemory application.
    Yagati AK; Kim SU; Min J; Choi JW
    J Nanosci Nanotechnol; 2010 May; 10(5):3220-3. PubMed ID: 20358926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer.
    Lee T; Ahmed El-Said W; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2010 May; 110(6):712-7. PubMed ID: 20206446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disordered self assembled monolayer dielectric induced hysteresis in organic field effect transistors.
    Padma N; Saxena V; Sudarsan V; Rava H; Sen S
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4418-23. PubMed ID: 24738406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale protein-based memory device composed of recombinant azurin.
    Kim SU; Yagati AK; Min J; Choi JW
    Biomaterials; 2010 Feb; 31(6):1293-8. PubMed ID: 19857891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant protein-based nanoscale biomemory devices.
    Yagati AK; Min J; Choi JW
    J Nanosci Nanotechnol; 2014 Jan; 14(1):433-46. PubMed ID: 24730273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Feb; 40(1):283-90. PubMed ID: 22884649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers.
    Lee T; El-Said WA; Min J; Choi JW
    Biosens Bioelectron; 2011 Jan; 26(5):2304-10. PubMed ID: 21051218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular scale photodiode composed of recombinant ferredoxin/chlorophyll a heterostructure.
    Choi JW; Lee DB; Oh BK; Min J; Kim KS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4527-32. PubMed ID: 19049051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generic relevance of counter charges for cation-based nanoscale resistive switching memories.
    Tappertzhofen S; Valov I; Tsuruoka T; Hasegawa T; Waser R; Aono M
    ACS Nano; 2013 Jul; 7(7):6396-402. PubMed ID: 23786236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory applications and electrical bistability of semiconducting nanoparticles: do the phenomena depend on bandgap?
    Das BC; Pal AJ
    Small; 2008 May; 4(5):542-7. PubMed ID: 18421723
    [No Abstract]   [Full Text] [Related]  

  • 12. Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties.
    Lee JS; Cho J; Lee C; Kim I; Park J; Kim YM; Shin H; Lee J; Caruso F
    Nat Nanotechnol; 2007 Dec; 2(12):790-5. PubMed ID: 18654433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable processes for fabricating non-volatile memory devices using self-assembled 2D arrays of gold nanoparticles as charge storage nodes.
    Muralidharan G; Bhat N; Santhanam V
    Nanoscale; 2011 Nov; 3(11):4575-9. PubMed ID: 21987060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of graphene 'bow tie' nanofuses for permanent, write-once-read-many data storage devices.
    Pearson AC; Jamieson S; Linford MR; Lunt BM; Davis RC
    Nanotechnology; 2013 Apr; 24(13):135202. PubMed ID: 23478811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-bit biomemory consisting of recombinant protein variants, azurin.
    Yagati AK; Kim SU; Min J; Choi JW
    Biosens Bioelectron; 2009 Jan; 24(5):1503-7. PubMed ID: 18809307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A four-bit-per-cell program method with substrate-bias assisted hot electron injection for charge trap flash memory devices.
    An HM; Kim HD; Kim B; Kim TG
    J Nanosci Nanotechnol; 2013 May; 13(5):3293-7. PubMed ID: 23858846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory.
    Lee SH; Jung Y; Agarwal R
    Nat Nanotechnol; 2007 Oct; 2(10):626-30. PubMed ID: 18654387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-terminal nonvolatile memories based on single-walled carbon nanotubes.
    Yao J; Jin Z; Zhong L; Natelson D; Tour JM
    ACS Nano; 2009 Dec; 3(12):4122-6. PubMed ID: 19904998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.
    Kim J; Son D; Lee M; Song C; Song JK; Koo JH; Lee DJ; Shim HJ; Kim JH; Lee M; Hyeon T; Kim DH
    Sci Adv; 2016 Jan; 2(1):e1501101. PubMed ID: 26763827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of tunnel oxide nitridation to reliability performance of charge storage non-volatile memory devices.
    Lee MC; Wong HY
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1508-20. PubMed ID: 24749438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.