These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19908760)

  • 1. Fabrication of novel transparent inorganic polymer derived microchannels and application for photopolymerization.
    Min KI; Park JH; Hong LY; Kim DP
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7215-9. PubMed ID: 19908760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.
    Yoon TH; Jung SH; Kim DP
    J Nanosci Nanotechnol; 2011 May; 11(5):4295-9. PubMed ID: 21780445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication.
    Xu Y; Qi F; Mao H; Li S; Zhu Y; Gong J; Wang L; Malmstadt N; Chen Y
    Nat Commun; 2022 Feb; 13(1):918. PubMed ID: 35177598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel transparent poly(silazane) derived solvent-resistant, bio-compatible microchannels and substrates: application in microsystem technology.
    Asthana A; Asthana Y; Sung IK; Kim DP
    Lab Chip; 2006 Sep; 6(9):1200-4. PubMed ID: 16929399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicate glass coated microchannels through a phase conversion process for glass-like electrokinetic performance.
    Li M; Kim DP
    Lab Chip; 2011 Mar; 11(6):1126-31. PubMed ID: 21301730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pressure-tolerant polymer microfluidic device fabricated by the simultaneous solidification-bonding method and flash chemistry application.
    Ren W; Kim H; Lee HJ; Wang J; Wang H; Kim DP
    Lab Chip; 2014 Nov; 14(21):4263-9. PubMed ID: 25210977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature imprinting method for plastic microchannel fabrication.
    Xu J; Locascio L; Gaitan M; Lee CS
    Anal Chem; 2000 Apr; 72(8):1930-3. PubMed ID: 10784164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching.
    Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN
    Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile fabrication of a rigid and chemically resistant micromixer system from photocurable inorganic polymer by static liquid photolithography (SLP).
    Fang Q; Kim DP; Li X; Yoon TH; Li Y
    Lab Chip; 2011 Aug; 11(16):2779-84. PubMed ID: 21713287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid prototyping for injection moulded integrated microfluidic devices and diffractive element arrays.
    Hulme JP; Mohr S; Goddard NJ; Fielden PR
    Lab Chip; 2002 Nov; 2(4):203-6. PubMed ID: 15100811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging.
    Kim DNH; Kim KT; Kim C; Teitell MA; Zangle TA
    Microfluid Nanofluidics; 2018 Jan; 22():. PubMed ID: 29725276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of concave micromirrors for single cell imaging
    Bonabi A; Cito S; Tammela P; Jokinen V; Sikanen T
    Biomicrofluidics; 2017 May; 11(3):034118. PubMed ID: 28652888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser fabrication of microfluidic channels for organic photonic devices.
    Chaitanya Vishnubhatla K; Clark J; Lanzani G; Ramponi R; Osellame R; Virgili T
    Appl Opt; 2009 Nov; 48(31):G114-8. PubMed ID: 19881630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Prototyping of Polymer-Based Rolled-Up Microfluidic Devices.
    Arayanarakool R; See HH; Marshall SD; Virik NS; Wang H; Lee PS; Chen PCY
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization.
    Park W; Han S; Kwon S
    Lab Chip; 2010 Oct; 10(20):2814-7. PubMed ID: 20721367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injection molded microfluidic chips featuring integrated interconnects.
    Mair DA; Geiger E; Pisano AP; Fréchet JM; Svec F
    Lab Chip; 2006 Oct; 6(10):1346-54. PubMed ID: 17102848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional closed microfluidic channel fabrication by stepper projection single step lithography: the diabolo effect.
    Larramendy F; Mazenq L; Temple-Boyer P; Nicu L
    Lab Chip; 2012 Jan; 12(2):387-90. PubMed ID: 22069055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds.
    Lim H; Ryu J; Kim G; Choi KB; Lee S; Lee J
    Lab Chip; 2013 Aug; 13(16):3188-91. PubMed ID: 23793420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.