These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19908896)

  • 1. Computational identification of slow conformational fluctuations in proteins.
    Ramanathan A; Agarwal PK
    J Phys Chem B; 2009 Dec; 113(52):16669-80. PubMed ID: 19908896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Sub-states and Populations in Enzyme Catalysis.
    Agarwal PK; Doucet N; Chennubhotla C; Ramanathan A; Narayanan C
    Methods Enzymol; 2016; 578():273-97. PubMed ID: 27497171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein conformational populations and functionally relevant substates.
    Ramanathan A; Savol A; Burger V; Chennubhotla CS; Agarwal PK
    Acc Chem Res; 2014 Jan; 47(1):149-56. PubMed ID: 23988159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering conformational sub-states relevant to protein function.
    Ramanathan A; Savol AJ; Langmead CJ; Agarwal PK; Chennubhotla CS
    PLoS One; 2011 Jan; 6(1):e15827. PubMed ID: 21297978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme dynamics during catalysis.
    Eisenmesser EZ; Bosco DA; Akke M; Kern D
    Science; 2002 Feb; 295(5559):1520-3. PubMed ID: 11859194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Molecular Basis of the Interaction of Cyclophilin A with α-Synuclein.
    Favretto F; Baker JD; Strohäker T; Andreas LB; Blair LJ; Becker S; Zweckstetter M
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5643-5646. PubMed ID: 31830361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.
    Nagaraju M; McGowan LC; Hamelberg D
    J Chem Inf Model; 2013 Feb; 53(2):403-10. PubMed ID: 23312027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
    Lange OF; Lakomek NA; Farès C; Schröder GF; Walter KF; Becker S; Meiler J; Grubmüller H; Griesinger C; de Groot BL
    Science; 2008 Jun; 320(5882):1471-5. PubMed ID: 18556554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies.
    Agarwal PK
    Proteins; 2004 Aug; 56(3):449-63. PubMed ID: 15229879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A.
    Bosco DA; Eisenmesser EZ; Pochapsky S; Sundquist WI; Kern D
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5247-52. PubMed ID: 11929983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrogen bond regulates slow motions in ubiquitin by modulating a β-turn flip.
    Sidhu A; Surolia A; Robertson AD; Sundd M
    J Mol Biol; 2011 Sep; 411(5):1037-48. PubMed ID: 21741979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.
    Friedland GD; Lakomek NA; Griesinger C; Meiler J; Kortemme T
    PLoS Comput Biol; 2009 May; 5(5):e1000393. PubMed ID: 19478996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and molecular dynamics simulation of ubiquitin-like domain of murine parkin.
    Tomoo K; Mukai Y; In Y; Miyagawa H; Kitamura K; Yamano A; Shindo H; Ishida T
    Biochim Biophys Acta; 2008; 1784(7-8):1059-67. PubMed ID: 18485927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic allostery governs cyclophilin A-HIV capsid interplay.
    Lu M; Hou G; Zhang H; Suiter CL; Ahn J; Byeon IJ; Perilla JR; Langmead CJ; Hung I; Gor'kov PL; Gan Z; Brey W; Aiken C; Zhang P; Schulten K; Gronenborn AM; Polenova T
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14617-22. PubMed ID: 26553990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography.
    Keedy DA; Kenner LR; Warkentin M; Woldeyes RA; Hopkins JB; Thompson MC; Brewster AS; Van Benschoten AH; Baxter EL; Uervirojnangkoorn M; McPhillips SE; Song J; Alonso-Mori R; Holton JM; Weis WI; Brunger AT; Soltis SM; Lemke H; Gonzalez A; Sauter NK; Cohen AE; van den Bedem H; Thorne RE; Fraser JS
    Elife; 2015 Sep; 4():. PubMed ID: 26422513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
    McGowan LC; Hamelberg D
    Biophys J; 2013 Jan; 104(1):216-26. PubMed ID: 23332074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keep on moving: discovering and perturbing the conformational dynamics of enzymes.
    Bhabha G; Biel JT; Fraser JS
    Acc Chem Res; 2015 Feb; 48(2):423-30. PubMed ID: 25539415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picosecond to Millisecond Structural Dynamics in Human Ubiquitin.
    Lindorff-Larsen K; Maragakis P; Piana S; Shaw DE
    J Phys Chem B; 2016 Aug; 120(33):8313-20. PubMed ID: 27082121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico elucidation of the recognition dynamics of ubiquitin.
    Long D; Brüschweiler R
    PLoS Comput Biol; 2011 Apr; 7(4):e1002035. PubMed ID: 21533067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.