BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19908930)

  • 1. Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins.
    Buth JM; Grandbois M; Vikesland PJ; McNeill K; Arnold WA
    Environ Toxicol Chem; 2009 Dec; 28(12):2555-63. PubMed ID: 19908930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores.
    Anger CT; Sueper C; Blumentritt DJ; McNeill K; Engstrom DR; Arnold WA
    Environ Sci Technol; 2013 Feb; 47(4):1833-43. PubMed ID: 23320506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan.
    Rule KL; Ebbett VR; Vikesland PJ
    Environ Sci Technol; 2005 May; 39(9):3176-85. PubMed ID: 15926568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of Triclosan and Its Chlorinated Derivatives.
    Narimani M; da Silva G
    J Phys Chem A; 2020 Oct; 124(39):8050-8056. PubMed ID: 32875798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection.
    Buth JM; Ross MR; McNeill K; Arnold WA
    Chemosphere; 2011 Aug; 84(9):1238-43. PubMed ID: 21652055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores.
    Buth JM; Steen PO; Sueper C; Blumentritt D; Vikesland PJ; Arnold WA; McNeill K
    Environ Sci Technol; 2010 Jun; 44(12):4545-51. PubMed ID: 20476764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the environmental photochemistry of 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan): reconsidering the importance of indirect photoreactions.
    Bianco A; Fabbri D; Minella M; Brigante M; Mailhot G; Maurino V; Minero C; Vione D
    Water Res; 2015 Apr; 72():271-80. PubMed ID: 25179274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and chlorinated derivatives (OH-PBCDEs).
    Steen PO; Grandbois M; McNeill K; Arnold WA
    Environ Sci Technol; 2009 Jun; 43(12):4405-11. PubMed ID: 19603654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water.
    Zhang YN; Xie Q; Sun G; Yang K; Song S; Chen J; Zhou C; Li Y
    Environ Sci Process Impacts; 2016 Sep; 18(9):1177-84. PubMed ID: 27383795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation.
    Kliegman S; Eustis SN; Arnold WA; McNeill K
    Environ Sci Technol; 2013 Jul; 47(13):6756-63. PubMed ID: 23282071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation behavior of triclosan by co-exposure to chlorine dioxide and UV irradiation: influencing factors and toxicity changes.
    Li QS; Cai HW; Li GX; Chen GY; Ma XY; He WL
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9391-9401. PubMed ID: 29349741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of triclosan in wastewater treatment systems.
    McAvoy DC; Schatowitz B; Jacob M; Hauk A; Eckhoff WS
    Environ Toxicol Chem; 2002 Jul; 21(7):1323-9. PubMed ID: 12109730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection.
    Buth JM; Ross MR; McNeill K; Arnold WA
    Chemosphere; 2011 Sep; 85(2):284-9. PubMed ID: 21944039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products.
    Latch DE; Packer JL; Stender BL; VanOverbeke J; Arnold WA; McNeill K
    Environ Toxicol Chem; 2005 Mar; 24(3):517-25. PubMed ID: 15779749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorination of Irgasan DP300 and formation of dioxins from its chlorinated derivatives.
    Kanetoshi A; Ogawa H; Katsura E; Kaneshima H
    J Chromatogr; 1987 Feb; 389(1):139-53. PubMed ID: 3571350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.
    Chen J; Qu R; Pan X; Wang Z
    Water Res; 2016 Oct; 103():215-223. PubMed ID: 27459151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the photolysis products and biological concerns of triclosan under UVC and UVA.
    Li LP; Jin YC; Ren D; Wang JJ; Fang L; Li X; Zhang X; Cui DW; Chen X; Liu XH
    Ecotoxicol Environ Saf; 2023 Jun; 258():114998. PubMed ID: 37167739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction.
    Sanchez-Prado L; Llompart M; Lores M; GarcĂ­a-Jares C; Bayona JM; Cela R
    Chemosphere; 2006 Nov; 65(8):1338-47. PubMed ID: 16735047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dioxin-like toxicity in the Saginaw River Watershed: polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in sediments and floodplain soils from the Saginaw and Shiawassee Rivers and Saginaw Bay, Michigan, USA.
    Kannan K; Yun SH; Ostaszewski A; McCabe JM; Mackenzie-Taylor D; Taylor AB
    Arch Environ Contam Toxicol; 2008 Jan; 54(1):9-19. PubMed ID: 17917761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.
    Ding J; Su M; Wu C; Lin K
    Chemosphere; 2015 Aug; 133():41-6. PubMed ID: 25880455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.