BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19909581)

  • 1. Carnosine inhibits ATP production in cells from malignant glioma.
    Renner C; Asperger A; Seyffarth A; Meixensberger J; Gebhardt R; Gaunitz F
    Neurol Res; 2010 Feb; 32(1):101-5. PubMed ID: 19909581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways.
    Shen Y; Yang J; Li J; Shi X; Ouyang L; Tian Y; Lu J
    PLoS One; 2014; 9(8):e104632. PubMed ID: 25115854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate attenuates the anti-neoplastic effect of carnosine independently from oxidative phosphorylation.
    Oppermann H; Schnabel L; Meixensberger J; Gaunitz F
    Oncotarget; 2016 Dec; 7(52):85848-85860. PubMed ID: 27811375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production.
    Iovine B; Iannella ML; Nocella F; Pricolo MR; Bevilacqua MA
    Cancer Lett; 2012 Feb; 315(2):122-8. PubMed ID: 22137144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.
    Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF
    J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis.
    Wang C; Chen H; Zhang M; Zhang J; Wei X; Ying W
    Cancer Lett; 2016 Aug; 378(1):1-7. PubMed ID: 27157912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carnosine Inhibits the Proliferation of Human Cervical Gland Carcinoma Cells Through Inhibiting Both Mitochondrial Bioenergetics and Glycolysis Pathways and Retarding Cell Cycle Progression.
    Bao Y; Ding S; Cheng J; Liu Y; Wang B; Xu H; Shen Y; Lyu J
    Integr Cancer Ther; 2018 Mar; 17(1):80-91. PubMed ID: 28008780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of tumour cell growth by carnosine: some possible mechanisms.
    Hipkiss AR; Gaunitz F
    Amino Acids; 2014 Feb; 46(2):327-37. PubMed ID: 24292217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-enzymatic reaction of carnosine and glyceraldehyde-3-phosphate accompanies metabolic changes of the pentose phosphate pathway.
    Oppermann H; Birkemeyer C; Meixensberger J; Gaunitz F
    Cell Prolif; 2020 Feb; 53(2):e12702. PubMed ID: 31628715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.
    Kosic M; Arsikin-Csordas K; Paunovic V; Firestone RA; Ristic B; Mircic A; Petricevic S; Bosnjak M; Zogovic N; Mandic M; Bumbasirevic V; Trajkovic V; Harhaji-Trajkovic L
    J Biol Chem; 2016 Oct; 291(44):22936-22948. PubMed ID: 27587392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine.
    Cheng JY; Yang JB; Liu Y; Xu M; Huang YY; Zhang JJ; Cao P; Lyu JX; Shen Y
    Acta Pharmacol Sin; 2019 Jul; 40(7):938-948. PubMed ID: 30560903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carnosine suppresses human glioma cells under normoxic and hypoxic conditions partly via inhibiting glutamine metabolism.
    Fang YJ; Wu M; Chen HN; Wen TT; Lyu JX; Shen Y
    Acta Pharmacol Sin; 2021 May; 42(5):767-779. PubMed ID: 32782394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7.
    Knouzy B; Dubourg L; Baverel G; Michoudet C
    J Appl Toxicol; 2010 Apr; 30(3):204-11. PubMed ID: 19774546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.
    Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA
    Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine.
    Holliday R; McFarland GA
    Br J Cancer; 1996 Apr; 73(8):966-71. PubMed ID: 8611433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells.
    Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Marín-Hernández A; Ruiz-Azuara L; Moreno-Sánchez R
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):208-17. PubMed ID: 16580038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model.
    Renner C; Zemitzsch N; Fuchs B; Geiger KD; Hermes M; Hengstler J; Gebhardt R; Meixensberger J; Gaunitz F
    Mol Cancer; 2010 Jan; 9():2. PubMed ID: 20053283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure.
    Oudard S; Boitier E; Miccoli L; Rousset S; Dutrillaux B; Poupon MF
    Anticancer Res; 1997; 17(3C):1903-11. PubMed ID: 9216643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic glycolysis protection against 1-methy-4-phenylpyridinium (MPP+) toxicity in C6 glioma cells.
    Williams ZR; Goodman CB; Soliman KF
    Neurochem Res; 2007 Jun; 32(6):1071-80. PubMed ID: 17401669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.