BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1990970)

  • 1. Physicochemical characterization of bovine retinal arrestin.
    Kotake S; Hey P; Mirmira RG; Copeland RA
    Arch Biochem Biophys; 1991 Feb; 285(1):126-33. PubMed ID: 1990970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic phosphopeptide from rhodopsin sequence induces retinal arrestin binding to photoactivated unphosphorylated rhodopsin.
    Puig J; Arendt A; Tomson FL; Abdulaeva G; Miller R; Hargrave PA; McDowell JH
    FEBS Lett; 1995 Apr; 362(2):185-8. PubMed ID: 7720869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation.
    Azarian SM; King AJ; Hallett MA; Williams DS
    J Biol Chem; 1995 Oct; 270(41):24375-84. PubMed ID: 7592650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational, thermodynamic, and stability properties of Manduca sexta apolipophorin III.
    Ryan RO; Oikawa K; Kay CM
    J Biol Chem; 1993 Jan; 268(3):1525-30. PubMed ID: 8420928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin.
    Palczewski K; Pulvermüller A; Buczyłko J; Hofmann KP
    J Biol Chem; 1991 Oct; 266(28):18649-54. PubMed ID: 1917988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A segment corresponding to amino acids Val170-Arg182 of bovine arrestin is capable of binding to phosphorylated rhodopsin.
    Kieselbach T; Irrgang KD; Rüppel H
    Eur J Biochem; 1994 Nov; 226(1):87-97. PubMed ID: 7957262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of arrestin interactions with competitive ligands: study of heparin and phytic acid binding.
    Wilson CJ; Copeland RA
    J Protein Chem; 1997 Nov; 16(8):755-63. PubMed ID: 9365924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1995 Mar; 270(11):6010-6. PubMed ID: 7890732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of ligand binding to arrestin.
    Palczewski K; Hargrave PA
    J Biol Chem; 1991 Mar; 266(7):4201-6. PubMed ID: 1999413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of human acidic fibroblast growth factor and its interaction with heparin.
    Copeland RA; Ji H; Halfpenny AJ; Williams RW; Thompson KC; Herber WK; Thomas KA; Bruner MW; Ryan JA; Marquis-Omer D
    Arch Biochem Biophys; 1991 Aug; 289(1):53-61. PubMed ID: 1716876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin.
    Gurevich VV; Benovic JL
    J Biol Chem; 1993 Jun; 268(16):11628-38. PubMed ID: 8505295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin.
    Palczewski K; Buczyłko J; Imami NR; McDowell JH; Hargrave PA
    J Biol Chem; 1991 Aug; 266(23):15334-9. PubMed ID: 1651326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.
    Krupnick JG; Gurevich VV; Schepers T; Hamm HE; Benovic JL
    J Biol Chem; 1994 Feb; 269(5):3226-32. PubMed ID: 8106358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrestin from nucleated red blood cells binds to bovine rhodopsin in a light-dependent manner.
    Scheuring U; Franco M; Fievet B; Guizouarn H; Mirshahi M; Faure JP; Motais R
    FEBS Lett; 1990 Dec; 276(1-2):192-6. PubMed ID: 2265700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-induced conformational states of bovine growth hormone.
    Holzman TF; Dougherty JJ; Brems DN; MacKenzie NE
    Biochemistry; 1990 Feb; 29(5):1255-61. PubMed ID: 2322560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a truncated form of arrestin isolated from bovine rod outer segments.
    Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA
    Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange.
    Ohguro H; Palczewski K; Walsh KA; Johnson RS
    Protein Sci; 1994 Dec; 3(12):2428-34. PubMed ID: 7756996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A.
    Navon A; Ittah V; Laity JH; Scheraga HA; Haas E; Gussakovsky EE
    Biochemistry; 2001 Jan; 40(1):93-104. PubMed ID: 11141060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.