BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 19909777)

  • 1. Targeted hyperthermia using metal nanoparticles.
    Cherukuri P; Glazer ES; Curley SA
    Adv Drug Deliv Rev; 2010 Mar; 62(3):339-45. PubMed ID: 19909777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies.
    Kennedy LC; Bickford LR; Lewinski NA; Coughlin AJ; Hu Y; Day ES; West JL; Drezek RA
    Small; 2011 Jan; 7(2):169-83. PubMed ID: 21213377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide-gold nanohybrid.
    Beyk J; Tavakoli H
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2199-2209. PubMed ID: 31309302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.
    Curley SA; Cherukuri P; Briggs K; Patra CR; Upton M; Dolson E; Mukherjee P
    J Exp Ther Oncol; 2008; 7(4):313-26. PubMed ID: 19227011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-loaded neural stem cells for photothermal ablation of cancer.
    Schnarr K; Mooney R; Weng Y; Zhao D; Garcia E; Armstrong B; Annala AJ; Kim SU; Aboody KS; Berlin JM
    Adv Healthc Mater; 2013 Jul; 2(7):976-82. PubMed ID: 23592703
    [No Abstract]   [Full Text] [Related]  

  • 6. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles.
    Glazer ES; Curley SA
    Cancer; 2010 Jul; 116(13):3285-93. PubMed ID: 20564640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.
    Yakunin AN; Avetisyan YA; Tuchin VV
    J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes.
    Glazer ES; Curley SA
    Ther Deliv; 2011 Oct; 2(10):1325-30. PubMed ID: 22826886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle hyperthermia reduces radiotherapy dose.
    Hainfeld JF; Lin L; Slatkin DN; Avraham Dilmanian F; Vadas TM; Smilowitz HM
    Nanomedicine; 2014 Nov; 10(8):1609-17. PubMed ID: 24990355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.
    Samadian H; Hosseini-Nami S; Kamrava SK; Ghaznavi H; Shakeri-Zadeh A
    J Cancer Res Clin Oncol; 2016 Nov; 142(11):2217-29. PubMed ID: 27209529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy.
    Raoof M; Corr SJ; Kaluarachchi WD; Massey KL; Briggs K; Zhu C; Cheney MA; Wilson LJ; Curley SA
    Nanomedicine; 2012 Oct; 8(7):1096-105. PubMed ID: 22349096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry.
    Amini SM; Kharrazi S; Rezayat SM; Gilani K
    Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1452-1462. PubMed ID: 28891351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer decorated gold nanoparticles in nanomedicine conjugates.
    Capek I
    Adv Colloid Interface Sci; 2017 Nov; 249():386-399. PubMed ID: 28259207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles as novel agents for cancer therapy.
    Jain S; Hirst DG; O'Sullivan JM
    Br J Radiol; 2012 Feb; 85(1010):101-13. PubMed ID: 22010024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold Nanoparticles in Cancer Therapy: Efficacy, Biodistribution, and Toxicity.
    Zhao J; Lee P; Wallace MJ; Melancon MP
    Curr Pharm Des; 2015; 21(29):4240-51. PubMed ID: 26323426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles for thermal cancer therapy.
    Day ES; Morton JG; West JL
    J Biomech Eng; 2009 Jul; 131(7):074001. PubMed ID: 19640133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy.
    Corr SJ; Cisneros BT; Green L; Raoof M; Curley SA
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-mediated hyperthermia in cancer therapy.
    Chatterjee DK; Diagaradjane P; Krishnan S
    Ther Deliv; 2011 Aug; 2(8):1001-14. PubMed ID: 22506095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnology and its relationship to interventional radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention.
    Power S; Slattery MM; Lee MJ
    Cardiovasc Intervent Radiol; 2011 Aug; 34(4):676-90. PubMed ID: 20845040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.