BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19909809)

  • 1. Voltage-sensitive dye imaging: Technique review and models.
    Chemla S; Chavane F
    J Physiol Paris; 2010; 104(1-2):40-50. PubMed ID: 19909809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.
    Reynaud A; Takerkart S; Masson GS; Chavane F
    Neuroimage; 2011 Jan; 54(2):1196-210. PubMed ID: 20800686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biophysical cortical column model to study the multi-component origin of the VSDI signal.
    Chemla S; Chavane F
    Neuroimage; 2010 Nov; 53(2):420-38. PubMed ID: 20600993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-sweep voltage-sensitive dye imaging of interacting identified neurons.
    Stein W; Städele C; Andras P
    J Neurosci Methods; 2011 Jan; 194(2):224-34. PubMed ID: 20969892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-cell recording and voltage-sensitive dye imaging in vivo.
    Petersen C
    Cold Spring Harb Protoc; 2009 Jun; 2009(6):pdb.prot5232. PubMed ID: 20147190
    [No Abstract]   [Full Text] [Related]  

  • 8. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fast and aimed delivery of voltage-sensitive dyes to mammalian brain slices by biolistic techniques].
    Aseev NA; Nikitin ES; Roshchin MV; Ierusalimskiĭ VN; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(1):100-7. PubMed ID: 22567991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-sensitive dye imaging of neuronal populations under hyperbaric conditions: preliminary results obtained using a new technique.
    Wlodarczyk A; Jacques S; McMillan PF
    Undersea Hyperb Med; 2010; 37(3):151-8. PubMed ID: 20568544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations.
    Newton TH; Reimann MW; Abdellah M; Chevtchenko G; Muller EB; Markram H
    Nat Commun; 2021 Jun; 12(1):3630. PubMed ID: 34131136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices.
    Cappaert NL; Lopes da Silva FH; Wadman WJ
    Hippocampus; 2009 Nov; 19(11):1065-77. PubMed ID: 19338021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex.
    Takeshita D; Bahar S
    Chaos; 2011 Dec; 21(4):047506. PubMed ID: 22225380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging.
    Raguet H; Monier C; Foubert L; Ferezou I; Fregnac Y; Peyré G
    J Neurosci Methods; 2016 Jan; 257():76-96. PubMed ID: 26434707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models.
    Knock SA; McIntosh AR; Sporns O; Kötter R; Hagmann P; Jirsa VK
    J Neurosci Methods; 2009 Sep; 183(1):86-94. PubMed ID: 19607860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Approaches for Mesoscopic Brain Mapping.
    Kyweriga M; Mohajerani MH
    Methods Mol Biol; 2016; 1408():251-65. PubMed ID: 26965128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
    Grinvald A; Omer D; Naaman S; Sharon D
    Adv Exp Med Biol; 2015; 859():243-71. PubMed ID: 26238056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex.
    Villeneuve MY; Vanni MP; Casanova C
    Neuroscience; 2009 Dec; 164(3):1320-33. PubMed ID: 19712725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically encoded probes for optical imaging of brain electrical activity.
    Perron A; Akemann W; Mutoh H; Knöpfel T
    Prog Brain Res; 2012; 196():63-77. PubMed ID: 22341321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.