BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19909961)

  • 1. Interlaced size exclusion liquid chromatography of monoclonal antibodies.
    Farnan D; Moreno GT; Stults J; Becker A; Tremintin G; van Gils M
    J Chromatogr A; 2009 Dec; 1216(51):8904-9. PubMed ID: 19909961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast size-exclusion chromatography--theoretical and practical considerations.
    Popovici ST; Schoenmakers PJ
    J Chromatogr A; 2005 Dec; 1099(1-2):92-102. PubMed ID: 16330275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-size-based membrane chromatographic separation and analysis of monoclonal antibody aggregates.
    Wang L; Hale G; Ghosh R
    Anal Chem; 2006 Oct; 78(19):6863-7. PubMed ID: 17007507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography x liquid chromatography.
    Bedani F; Kok WT; Janssen HG
    J Chromatogr A; 2006 Nov; 1133(1-2):126-34. PubMed ID: 16959256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased throughput in quantitative bioanalysis using parallel-column liquid chromatography with mass spectrometric detection.
    Jemal M; Huang M; Mao Y; Whigan D; Powell ML
    Rapid Commun Mass Spectrom; 2001; 15(12):994-9. PubMed ID: 11400209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature.
    Im K; Park HW; Lee S; Chang T
    J Chromatogr A; 2009 May; 1216(21):4606-10. PubMed ID: 19375711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary size exclusion chromatography with picogram sensitivity for analysis of monoclonal antibodies purified from harvested cell culture fluid.
    Rea JC; Moreno GT; Vampola L; Lou Y; van Haan B; Tremintin G; Simmons L; Nava A; Wang YJ; Farnan D
    J Chromatogr A; 2012 Jan; 1219():140-6. PubMed ID: 22153816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Columns switch recycling size exclusion chromatography for high resolution protein separation.
    Yuan H; Zhang L; Zhang W; Liang Z; Zhang Y
    J Chromatogr A; 2009 Oct; 1216(42):7024-32. PubMed ID: 19758593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed gradient parallel liquid chromatography/tandem mass spectrometry with fully automated sample preparation for bioanalysis: 30 seconds per sample from plasma.
    Deng Y; Wu JT; Lloyd TL; Chi CL; Olah TV; Unger SE
    Rapid Commun Mass Spectrom; 2002; 16(11):1116-23. PubMed ID: 11992516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sub-two minutes method for monoclonal antibody-aggregate quantification using parallel interlaced size exclusion high performance liquid chromatography.
    Diederich P; Hansen SK; Oelmeier SA; Stolzenberger B; Hubbuch J
    J Chromatogr A; 2011 Dec; 1218(50):9010-8. PubMed ID: 22078232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved liquid chromatography-Online radioactivity detection for metabolite profiling.
    Cuyckens F; Koppen V; Kembuegler R; Leclercq L
    J Chromatogr A; 2008 Oct; 1209(1-2):128-35. PubMed ID: 18817918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and quantitation of monoclonal antibody aggregates by asymmetrical flow field-flow fractionation and comparison to gel permeation chromatography.
    Litzén A; Walter JK; Krischollek H; Wahlund KG
    Anal Biochem; 1993 Aug; 212(2):469-80. PubMed ID: 8214589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid chromatography of polymers under limiting conditions of desorption II. Tandem injection and quantitative molar mass determination.
    Snauko M; Berek D
    J Chromatogr A; 2005 Nov; 1094(1-2):42-8. PubMed ID: 16257287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization strategies for off-line two-dimensional liquid chromatography.
    Horváth K; Fairchild J; Guiochon G
    J Chromatogr A; 2009 Mar; 1216(12):2511-8. PubMed ID: 19217110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlaced Size Exclusion Chromatography for faster protein analysis.
    Kahle J; Wätzig H
    Eur J Pharm Biopharm; 2018 May; 126():101-103. PubMed ID: 29054386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graphical method for understanding the kinetics of peak capacity production in gradient elution liquid chromatography.
    Wang X; Stoll DR; Carr PW; Schoenmakers PJ
    J Chromatogr A; 2006 Sep; 1125(2):177-81. PubMed ID: 16777118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-D chromatography with optimized size exclusion chromatography resolution and multi-angle light scattering coupling.
    Moyses S
    J Sep Sci; 2010 Jun; 33(10):1480-6. PubMed ID: 20405486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples.
    Eeltink S; Dolman S; Swart R; Ursem M; Schoenmakers PJ
    J Chromatogr A; 2009 Oct; 1216(44):7368-74. PubMed ID: 19285679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution separation of recombinant monoclonal antibodies by size-exclusion ultra-high performance liquid chromatography (SE-UHPLC).
    Yang R; Tang Y; Zhang B; Lu X; Liu A; Zhang YT
    J Pharm Biomed Anal; 2015 May; 109():52-61. PubMed ID: 25766848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.