These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 19910114)
1. Use of composts in the remediation of heavy metal contaminated soil. Farrell M; Jones DL J Hazard Mater; 2010 Mar; 175(1-3):575-82. PubMed ID: 19910114 [TBL] [Abstract][Full Text] [Related]
2. Migration of heavy metals in soil as influenced by compost amendments. Farrell M; Perkins WT; Hobbs PJ; Griffith GW; Jones DL Environ Pollut; 2010 Jan; 158(1):55-64. PubMed ID: 19773103 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal contamination of a mixed waste compost: metal speciation and fate. Farrell M; Jones DL Bioresour Technol; 2009 Oct; 100(19):4423-32. PubMed ID: 19428240 [TBL] [Abstract][Full Text] [Related]
4. Remediation of metal contaminated soil with mineral-amended composts. van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876 [TBL] [Abstract][Full Text] [Related]
5. Reclamation of a mine contaminated soil using biologically reactive organic matrices. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Sci Total Environ; 2008 Nov; 406(1-2):43-56. PubMed ID: 18799197 [TBL] [Abstract][Full Text] [Related]
7. Study on the possibility of hydrogen peroxide pretreatment and plant system to remediate soil pollution. Lin Q; Chen Y; Wang Z; Wang Y Chemosphere; 2004 Dec; 57(10):1439-47. PubMed ID: 15519388 [TBL] [Abstract][Full Text] [Related]
8. Remediation of metal polluted mine soil with compost: co-composting versus incorporation. Tandy S; Healey JR; Nason MA; Williamson JC; Jones DL Environ Pollut; 2009 Feb; 157(2):690-7. PubMed ID: 18819736 [TBL] [Abstract][Full Text] [Related]
9. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Pardo T; Clemente R; Bernal MP Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902 [TBL] [Abstract][Full Text] [Related]
10. Improvement of soil quality after "alperujo" compost application to two contaminated soils characterised by differing heavy metal solubility. Alburquerque JA; de la Fuente C; Bernal MP J Environ Manage; 2011 Mar; 92(3):733-41. PubMed ID: 21035939 [TBL] [Abstract][Full Text] [Related]
11. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192 [TBL] [Abstract][Full Text] [Related]
12. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Arienzo M; Adamo P; Cozzolino V Sci Total Environ; 2004 Feb; 319(1-3):13-25. PubMed ID: 14967498 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil. Kim SH; Lee IS Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283 [TBL] [Abstract][Full Text] [Related]
14. Lime and compost promote plant re-colonization of metal-polluted, acidic soils. Ulriksen C; Ginocchio R; Mench M; Neaman A Int J Phytoremediation; 2012 Sep; 14(8):820-33. PubMed ID: 22908647 [TBL] [Abstract][Full Text] [Related]
15. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Saha JK; Panwar N; Singh MV Waste Manag; 2010 Feb; 30(2):192-201. PubMed ID: 19857948 [TBL] [Abstract][Full Text] [Related]
16. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. de la Fuente C; Clemente R; Bernal MP Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778 [TBL] [Abstract][Full Text] [Related]
17. Critical evaluation of municipal solid waste composting and potential compost markets. Farrell M; Jones DL Bioresour Technol; 2009 Oct; 100(19):4301-10. PubMed ID: 19443214 [TBL] [Abstract][Full Text] [Related]
18. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil. Rodríguez-Jordá MP; Garrido F; García-González MT J Hazard Mater; 2010 Mar; 175(1-3):762-9. PubMed ID: 19932561 [TBL] [Abstract][Full Text] [Related]
19. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter. A greenhouse study. Kumar GP; Yadav SK; Thawale PR; Singh SK; Juwarkar AA Bioresour Technol; 2008 Apr; 99(6):2078-82. PubMed ID: 17482809 [TBL] [Abstract][Full Text] [Related]
20. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]