These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19910305)

  • 21. Thermodynamics of RNA structures by Wang-Landau sampling.
    Lou F; Clote P
    Bioinformatics; 2010 Jun; 26(12):i278-86. PubMed ID: 20529917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Bioinformatics; 2004 Jan; 20(1):58-66. PubMed ID: 14693809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterising RNA secondary structure space using information entropy.
    Sükösd Z; Knudsen B; Anderson JW; Novák A; Kjems J; Pedersen CN
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S22. PubMed ID: 23368905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An optimized parsing algorithm well suited to RNA folding.
    Lefebvre F
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():222-30. PubMed ID: 7584441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast accessibility-based prediction of RNA-RNA interactions.
    Tafer H; Amman F; Eggenhofer F; Stadler PF; Hofacker IL
    Bioinformatics; 2011 Jul; 27(14):1934-40. PubMed ID: 21593134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Memory efficient folding algorithms for circular RNA secondary structures.
    Hofacker IL; Stadler PF
    Bioinformatics; 2006 May; 22(10):1172-6. PubMed ID: 16452114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An efficient algorithm for upper bound on the partition function of nucleic acids.
    Chitsaz H; Forouzmand E; Haffari G
    J Comput Biol; 2013 Jul; 20(7):486-94. PubMed ID: 23829650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows.
    Reeder J; Steffen P; Giegerich R
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W320-4. PubMed ID: 17478505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural RNA alignment by multi-objective optimization.
    Schnattinger T; Schöning U; Kestler HA
    Bioinformatics; 2013 Jul; 29(13):1607-13. PubMed ID: 23620356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computing the probability of RNA hairpin and multiloop formation.
    Ding Y; Lorenz WA; Dotu I; Senter E; Clote P
    J Comput Biol; 2014 Mar; 21(3):201-18. PubMed ID: 24559086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2004 Jul; 25(10):1295-304. PubMed ID: 15139042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast and effective prediction of microRNA/target duplexes.
    Rehmsmeier M; Steffen P; Hochsmann M; Giegerich R
    RNA; 2004 Oct; 10(10):1507-17. PubMed ID: 15383676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation.
    Antczak M; Popenda M; Zok T; Zurkowski M; Adamiak RW; Szachniuk M
    Bioinformatics; 2018 Apr; 34(8):1304-1312. PubMed ID: 29236971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Memory efficient alignment between RNA sequences and stochastic grammar models of pseudoknots.
    Song Y; Liu C; Malmberg RL; He C; Cai L
    Int J Bioinform Res Appl; 2006; 2(3):289-304. PubMed ID: 18048167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using binding profiles to predict binding sites of target RNAs.
    Poolsap U; Kato Y; Sato K; Akutsu T
    J Bioinform Comput Biol; 2011 Dec; 9(6):697-713. PubMed ID: 22084009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pseudoknots in RNA folding landscapes.
    Kucharík M; Hofacker IL; Stadler PF; Qin J
    Bioinformatics; 2016 Jan; 32(2):187-94. PubMed ID: 26428288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Faster computation of exact RNA shape probabilities.
    Janssen S; Giegerich R
    Bioinformatics; 2010 Mar; 26(5):632-9. PubMed ID: 20080511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.
    Chen X; He SM; Bu D; Zhang F; Wang Z; Chen R; Gao W
    Bioinformatics; 2008 Sep; 24(18):1994-2001. PubMed ID: 18586700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient sampling of RNA secondary structures from the Boltzmann ensemble of low-energy: the boustrophedon method.
    Ponty Y
    J Math Biol; 2008 Jan; 56(1-2):107-27. PubMed ID: 17932676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.