BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19910385)

  • 1. Highly expressed and slowly evolving proteins share compositional properties with thermophilic proteins.
    Cherry JL
    Mol Biol Evol; 2010 Mar; 27(3):735-41. PubMed ID: 19910385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural selection of more designable folds: a mechanism for thermophilic adaptation.
    England JL; Shakhnovich BE; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8727-31. PubMed ID: 12843403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein stability imposes limits on organism complexity and speed of molecular evolution.
    Zeldovich KB; Chen P; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16152-7. PubMed ID: 17913881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteins.
    Wang M; Wang D; Yu J; Huang S
    PeerJ; 2020; 8():e9983. PubMed ID: 32995099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic estimates of mutation and substitution rates contradict the evolutionary speed hypothesis of the latitudinal diversity gradient.
    Liu H; Sun M; Zhang J
    Proc Biol Sci; 2023 Oct; 290(2009):20231787. PubMed ID: 37876195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the effects of temperature on the evolution of bacterial tRNA pools.
    Jain V; Cope AL
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Abundant Proteins Are Highly Thermostable.
    Luzuriaga-Neira AR; Ritchie AM; Payne BL; Carrillo-Parramon O; Liberles DA; Alvarez-Ponce D
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37399326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purifying selection enduringly acts on the sequence evolution of highly expressed proteins in Escherichia coli.
    Shibai A; Kotani H; Sakata N; Furusawa C; Tsuru S
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 36073932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mutational Robustness of the Genetic Code and Codon Usage in Environmental Context: A Non-Extremophilic Preference?
    Radványi Á; Kun Á
    Life (Basel); 2021 Jul; 11(8):. PubMed ID: 34440517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis of mutational robustness based on codon usage supports that the standard genetic code does not prefer extreme environments.
    Radványi Á; Kun Á
    Sci Rep; 2021 May; 11(1):10963. PubMed ID: 34040064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteins of generalist and specialist pathogens differ in their amino acid composition.
    Blanco LP; Payne BL; Feyertag F; Alvarez-Ponce D
    Life Sci Alliance; 2018 Aug; 1(4):e201800017. PubMed ID: 30456362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions.
    Alvarez-Ponce D; Ruiz-González MX; Vera-Sirera F; Feyertag F; Perez-Amador MA; Fares MA
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow evolution of sex-biased genes in the reproductive tissue of the dioecious plant Salix viminalis.
    Darolti I; Wright AE; Pucholt P; Berlin S; Mank JE
    Mol Ecol; 2018 Feb; 27(3):694-708. PubMed ID: 29274186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis.
    Venev SV; Zeldovich KB
    Mol Biol Evol; 2018 Jan; 35(1):211-224. PubMed ID: 29106597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis).
    Saarman NP; Kober KM; Simison WB; Pogson GH
    Genome Biol Evol; 2017 Oct; 9(10):2739-2751. PubMed ID: 28985307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based analysis of Bacilli and plasmid dihydrofolate reductase evolution.
    Alotaibi M; Reyes BD; Le T; Luong P; Valafar F; Metzger RP; Fogel GB; Hecht D
    J Mol Graph Model; 2017 Jan; 71():135-153. PubMed ID: 27914300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of the rate of protein sequence evolution.
    Zhang J; Yang JR
    Nat Rev Genet; 2015 Jul; 16(7):409-20. PubMed ID: 26055156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lineage-specific sequence evolution and exon edge conservation partially explain the relationship between evolutionary rate and expression level in A. thaliana.
    Bush SJ; Kover PX; Urrutia AO
    Mol Ecol; 2015 Jun; 24(12):3093-106. PubMed ID: 25930165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of selection for protein stability on dN/dS estimations.
    Dasmeh P; Serohijos AW; Kepp KP; Shakhnovich EI
    Genome Biol Evol; 2014 Oct; 6(10):2956-67. PubMed ID: 25355808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics.
    Serohijos AW; Shakhnovich EI
    Curr Opin Struct Biol; 2014 Jun; 26():84-91. PubMed ID: 24952216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.