BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

627 related articles for article (PubMed ID: 19910640)

  • 1. NADPH oxidases: functions and pathologies in the vasculature.
    Lassègue B; Griendling KK
    Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):653-61. PubMed ID: 19910640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes.
    Kawahara T; Lambeth JD
    BMC Evol Biol; 2007 Sep; 7():178. PubMed ID: 17900370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases.
    Sumimoto H; Minakami R; Miyano K
    Methods Mol Biol; 2019; 1982():121-137. PubMed ID: 31172470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidases and vascular remodeling in cardiovascular diseases.
    García-Redondo AB; Aguado A; Briones AM; Salaices M
    Pharmacol Res; 2016 Dec; 114():110-120. PubMed ID: 27773825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of Nox proteins.
    Pendyala S; Natarajan V
    Respir Physiol Neurobiol; 2010 Dec; 174(3):265-71. PubMed ID: 20883826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.
    Schröder K; Weissmann N; Brandes RP
    Free Radic Biol Med; 2017 Aug; 109():22-32. PubMed ID: 28336130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition and functions of vascular nicotinamide adenine dinucleotide phosphate oxidases.
    Brandes RP; Schröder K
    Trends Cardiovasc Med; 2008 Jan; 18(1):15-9. PubMed ID: 18206804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidases in cardiovascular health and disease.
    Cave AC; Brewer AC; Narayanapanicker A; Ray R; Grieve DJ; Walker S; Shah AM
    Antioxid Redox Signal; 2006; 8(5-6):691-728. PubMed ID: 16771662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Nox family of NADPH oxidases: friend or foe of the vascular system?
    Takac I; Schröder K; Brandes RP
    Curr Hypertens Rep; 2012 Feb; 14(1):70-8. PubMed ID: 22071588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NOX Inhibitors: From Bench to Naxibs to Bedside.
    Elbatreek MH; Mucke H; Schmidt HHHW
    Handb Exp Pharmacol; 2021; 264():145-168. PubMed ID: 32780287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models.
    Rivera J; Sobey CG; Walduck AK; Drummond GR
    Redox Rep; 2010; 15(2):50-63. PubMed ID: 20500986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries.
    Niu XL; Madamanchi NR; Vendrov AE; Tchivilev I; Rojas M; Madamanchi C; Brandes RP; Krause KH; Humphries J; Smith A; Burnand KG; Runge MS
    Circulation; 2010 Feb; 121(4):549-59. PubMed ID: 20083677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis.
    Bryk D; Olejarz W; Zapolska-Downar D
    Postepy Hig Med Dosw (Online); 2017 Jan; 71(0):57-68. PubMed ID: 28181912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells.
    Lyle AN; Deshpande NN; Taniyama Y; Seidel-Rogol B; Pounkova L; Du P; Papaharalambus C; Lassègue B; Griendling KK
    Circ Res; 2009 Jul; 105(3):249-59. PubMed ID: 19574552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting NADPH Oxidases to Target Vascular and Other Pathologies: An Update on Recent Experimental and Clinical Studies.
    Sylvester AL; Zhang DX; Ran S; Zinkevich NS
    Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5.
    Montezano AC; Burger D; Ceravolo GS; Yusuf H; Montero M; Touyz RM
    Clin Sci (Lond); 2011 Feb; 120(4):131-41. PubMed ID: 21039341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.