These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19911076)

  • 1. Microfluidic technology in vascular research.
    van der Meer AD; Poot AA; Duits MH; Feijen J; Vermes I
    J Biomed Biotechnol; 2009; 2009():823148. PubMed ID: 19911076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic techniques for development of 3D vascularized tissue.
    Hasan A; Paul A; Vrana NE; Zhao X; Memic A; Hwang YS; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7308-25. PubMed ID: 24906345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in microfluidics-based experimental methods for neuroscience research.
    Park JW; Kim HJ; Kang MW; Jeon NL
    Lab Chip; 2013 Feb; 13(4):509-21. PubMed ID: 23306275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics for research and applications in oncology.
    Chaudhuri PK; Ebrahimi Warkiani M; Jing T; Kenry ; Lim CT
    Analyst; 2016 Jan; 141(2):504-24. PubMed ID: 26010996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The present and future role of microfluidics in biomedical research.
    Sackmann EK; Fulton AL; Beebe DJ
    Nature; 2014 Mar; 507(7491):181-9. PubMed ID: 24622198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Microfluidic Approach for Studying Piezo Channels.
    Maneshi MM; Gottlieb PA; Hua SZ
    Curr Top Membr; 2017; 79():309-334. PubMed ID: 28728822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The past, present and potential for microfluidic reactor technology in chemical synthesis.
    Elvira KS; Casadevall i Solvas X; Wootton RC; deMello AJ
    Nat Chem; 2013 Nov; 5(11):905-15. PubMed ID: 24153367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury.
    Neeves KB; Onasoga AA; Wufsus AR
    Curr Opin Hematol; 2013 Sep; 20(5):417-23. PubMed ID: 23872531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic wound-healing assay for quantifying endothelial cell migration.
    van der Meer AD; Vermeul K; Poot AA; Feijen J; Vermes I
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H719-25. PubMed ID: 19933413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic platform with four orthogonal and overlapping gradients for soluble compound screening in regenerative medicine research.
    Harink B; Le Gac S; Barata D; van Blitterswijk C; Habibovic P
    Electrophoresis; 2015 Feb; 36(3):475-84. PubMed ID: 25263102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in microfluidic cell culture systems for studying angiogenesis.
    Young EW
    J Lab Autom; 2013 Dec; 18(6):427-36. PubMed ID: 23832929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic flow-stretch chip for investigating blood vessel biomechanics.
    Zheng W; Jiang B; Wang D; Zhang W; Wang Z; Jiang X
    Lab Chip; 2012 Sep; 12(18):3441-50. PubMed ID: 22820518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in microfluidic large scale integration.
    Araci IE; Brisk P
    Curr Opin Biotechnol; 2014 Feb; 25():60-8. PubMed ID: 24484882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Devices in Advanced Caenorhabditis elegans Research.
    Muthaiyan Shanmugam M; Subhra Santra T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27490525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplatforms for gradient field generation of various properties and biological applications.
    Kim SH; Lee GH; Park JY; Lee SH
    J Lab Autom; 2015 Apr; 20(2):82-95. PubMed ID: 25510472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using microfluidic channel networks to generate gradients for studying cell migration.
    Rhoads DS; Nadkarni SM; Song L; Voeltz C; Bodenschatz E; Guan JL
    Methods Mol Biol; 2005; 294():347-57. PubMed ID: 15576923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.