These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 199111)

  • 41. Inherent differences in sensitivity to methylxanthines among inbred mice.
    Logan L; Seale TW; Carney JM
    Pharmacol Biochem Behav; 1986 May; 24(5):1281-6. PubMed ID: 3725830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.
    Xiao Y; van Hijum SA; Abee T; Wells-Bennik MH
    PLoS One; 2015; 10(5):e0127036. PubMed ID: 25978838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A technique for producing large yields of vegetative cell-free refractile Clostridium perfringens spores of unaltered heat resistance.
    Goodenough ER; Solberg M
    Appl Microbiol; 1972 Feb; 23(2):429-30. PubMed ID: 4336017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential outgrowth potential of Clostridium perfringens food-borne isolates with various cpe-genotypes in vacuum-packed ground beef during storage at 12°C.
    Xiao Y; Wagendorp A; Abee T; Wells-Bennik MH
    Int J Food Microbiol; 2015 Feb; 194():40-5. PubMed ID: 25461607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells.
    Janitschke D; Lauer AA; Bachmann CM; Seyfried M; Grimm HS; Hartmann T; Grimm MOW
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spore formation and germination of Clostridium perfringens in the digestive tract of holoxenic and axenic mice.
    Raibaud P; Ducluzeau R; Dubos F; Sacquet E
    J Appl Bacteriol; 1972 Jun; 35(2):177-84. PubMed ID: 4340357
    [No Abstract]   [Full Text] [Related]  

  • 48. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices.
    Zhu Y; Zhang J; Li M; Ren H; Zhu C; Yan L; Zhao G; Zhang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 May; 232():117997. PubMed ID: 32062401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures.
    Adams DM
    Appl Microbiol; 1973 Sep; 26(3):282-7. PubMed ID: 4356457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ionic germination of spores of Clostridium perfringens type A.
    Ando Y
    Jpn J Microbiol; 1974 Nov; 18(6):433-9. PubMed ID: 4375727
    [No Abstract]   [Full Text] [Related]  

  • 53. Cyclic AMP is not detectable in Clostridium perfringens.
    Setlow P; Sacks LE
    Can J Microbiol; 1983 Sep; 29(9):1228-30. PubMed ID: 6317152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens.
    Orsburn BC; Melville SB; Popham DL
    Mol Microbiol; 2010 Jan; 75(1):178-86. PubMed ID: 19968785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sporulation and enterotoxin production by Clostridium perfringens type A under conditions of controlled pH and temperature.
    Labbe RG; Duncan CL
    Can J Microbiol; 1974 Nov; 20(11):1493-501. PubMed ID: 4373153
    [No Abstract]   [Full Text] [Related]  

  • 56. The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates.
    Alnoman M; Udompijitkul P; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2015 Jun; 48():89-98. PubMed ID: 25790996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discriminative stimulus properties of methylxanthines and their metabolites in rats.
    Carney JM; Holloway FA; Modrow HE
    Life Sci; 1985 Mar; 36(10):913-20. PubMed ID: 3974401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Inhibition of the initiation of the germination of A type Clostridium perfringens spores by the bacteriocin from Clostridium perfringens BP6K-N5].
    Sebald M; Ionesco H
    C R Acad Hebd Seances Acad Sci D; 1974 Oct; 279(17):1503-6. PubMed ID: 4377122
    [No Abstract]   [Full Text] [Related]  

  • 59. A comparative study on the conditions of growth and sporulation of three strains of Clostridium perfringens type A.
    Decaudin M; Tholozan JL
    Can J Microbiol; 1996 Mar; 42(3):298-304. PubMed ID: 8868239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for stable messenger ribonucleic acid during sporulation and enterotoxin synthesis by Clostridium perfringens type A.
    Labbe RG; Duncan CL
    J Bacteriol; 1977 Feb; 129(2):843-9. PubMed ID: 190209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.