These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 19911157)
1. Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Frisch M; Thiemann A; Fu J; Schrag TA; Scholten S; Melchinger AE Theor Appl Genet; 2010 Jan; 120(2):441-50. PubMed ID: 19911157 [TBL] [Abstract][Full Text] [Related]
2. Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Reif JC; Fischer S; Schrag TA; Lamkey KR; Klein D; Dhillon BS; Utz HF; Melchinger AE Theor Appl Genet; 2010 Jan; 120(2):301-10. PubMed ID: 19436986 [TBL] [Abstract][Full Text] [Related]
3. Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles. Zenke-Philippi C; Thiemann A; Seifert F; Schrag T; Melchinger AE; Scholten S; Frisch M BMC Genomics; 2016 Mar; 17():262. PubMed ID: 27025377 [TBL] [Abstract][Full Text] [Related]
4. Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Thiemann A; Fu J; Schrag TA; Melchinger AE; Frisch M; Scholten S Theor Appl Genet; 2010 Jan; 120(2):401-13. PubMed ID: 19888564 [TBL] [Abstract][Full Text] [Related]
5. Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Schrag TA; Möhring J; Melchinger AE; Kusterer B; Dhillon BS; Piepho HP; Frisch M Theor Appl Genet; 2010 Jan; 120(2):451-61. PubMed ID: 19916002 [TBL] [Abstract][Full Text] [Related]
6. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield. Schrag TA; Maurer HP; Melchinger AE; Piepho HP; Peleman J; Frisch M Theor Appl Genet; 2007 May; 114(8):1345-55. PubMed ID: 17323040 [TBL] [Abstract][Full Text] [Related]
7. Partial least squares regression, support vector machine regression, and transcriptome-based distances for prediction of maize hybrid performance with gene expression data. Fu J; Falke KC; Thiemann A; Schrag TA; Melchinger AE; Scholten S; Frisch M Theor Appl Genet; 2012 Mar; 124(5):825-33. PubMed ID: 22101908 [TBL] [Abstract][Full Text] [Related]
8. Large-Scale Analysis of Combining Ability and Heterosis for Development of Hybrid Maize Breeding Strategies Using Diverse Germplasm Resources. Yu K; Wang H; Liu X; Xu C; Li Z; Xu X; Liu J; Wang Z; Xu Y Front Plant Sci; 2020; 11():660. PubMed ID: 32547580 [TBL] [Abstract][Full Text] [Related]
9. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820 [TBL] [Abstract][Full Text] [Related]
10. Genetic diversity in elite inbred lines of maize and its association with heterosis. Fernandes EH; Schuster I; Scapim CA; Vieira ES; Coan MM Genet Mol Res; 2015 Jun; 14(2):6509-17. PubMed ID: 26125855 [TBL] [Abstract][Full Text] [Related]
11. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL. Schrag TA; Melchinger AE; Sørensen AP; Frisch M Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712 [TBL] [Abstract][Full Text] [Related]
12. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. Stupar RM; Gardiner JM; Oldre AG; Haun WJ; Chandler VL; Springer NM BMC Plant Biol; 2008 Apr; 8():33. PubMed ID: 18402703 [TBL] [Abstract][Full Text] [Related]
13. [Predictive potential of DNA markers in heterosis breeding of maize]. Kozhukhova NE; Varenik BF; Sivolap IuM Tsitol Genet; 2005; 39(1):14-20. PubMed ID: 16018173 [TBL] [Abstract][Full Text] [Related]
14. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Schrag TA; Möhring J; Maurer HP; Dhillon BS; Melchinger AE; Piepho HP; Sørensen AP; Frisch M Theor Appl Genet; 2009 Feb; 118(4):741-51. PubMed ID: 19048224 [TBL] [Abstract][Full Text] [Related]
15. Heterosis is prevalent for multiple traits in diverse maize germplasm. Flint-Garcia SA; Buckler ES; Tiffin P; Ersoz E; Springer NM PLoS One; 2009 Oct; 4(10):e7433. PubMed ID: 19823591 [TBL] [Abstract][Full Text] [Related]
16. Genetic diversity and population structure of early and extra-early maturing maize germplasm adapted to sub-Saharan Africa. Badu-Apraku B; Garcia-Oliveira AL; Petroli CD; Hearne S; Adewale SA; Gedil M BMC Plant Biol; 2021 Feb; 21(1):96. PubMed ID: 33596835 [TBL] [Abstract][Full Text] [Related]
17. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Larièpe A; Moreau L; Laborde J; Bauland C; Mezmouk S; Décousset L; Mary-Huard T; Fiévet JB; Gallais A; Dubreuil P; Charcosset A Theor Appl Genet; 2017 Feb; 130(2):403-417. PubMed ID: 27913832 [TBL] [Abstract][Full Text] [Related]
18. Small RNA-based prediction of hybrid performance in maize. Seifert F; Thiemann A; Schrag TA; Rybka D; Melchinger AE; Frisch M; Scholten S BMC Genomics; 2018 May; 19(1):371. PubMed ID: 29783940 [TBL] [Abstract][Full Text] [Related]
19. Global transcriptional profiling between inbred parents and hybrids provides comprehensive insights into ear-length heterosis of maize (Zea mays). Zhang X; Ma C; Wang X; Wu M; Shao J; Huang L; Yuan L; Fu Z; Li W; Zhang X; Guo Z; Tang J BMC Plant Biol; 2021 Feb; 21(1):118. PubMed ID: 33637040 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Guo M; Rupe MA; Yang X; Crasta O; Zinselmeier C; Smith OS; Bowen B Theor Appl Genet; 2006 Sep; 113(5):831-45. PubMed ID: 16868764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]