These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 19911162)
21. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Kump KL; Bradbury PJ; Wisser RJ; Buckler ES; Belcher AR; Oropeza-Rosas MA; Zwonitzer JC; Kresovich S; McMullen MD; Ware D; Balint-Kurti PJ; Holland JB Nat Genet; 2011 Feb; 43(2):163-8. PubMed ID: 21217757 [TBL] [Abstract][Full Text] [Related]
22. Mapping Quantitative Trait Loci for Resistance to Fall Armyworm (Lepidoptera: Noctuidae) Leaf-Feeding Damage in Maize Inbred Mp705. Womack ED; Williams WP; Smith JS; Warburton ML; Bhattramakki D J Econ Entomol; 2020 Apr; 113(2):956-963. PubMed ID: 31914176 [TBL] [Abstract][Full Text] [Related]
23. Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.). Zhang Y; Liang T; Chen M; Zhang Y; Wang T; Lin H; Rong T; Zou C; Liu P; Lee M; Pan G; Shen Y; Lübberstedt T Mol Genet Genomics; 2019 Oct; 294(5):1277-1288. PubMed ID: 31139941 [TBL] [Abstract][Full Text] [Related]
24. Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Park WJ; Schäfer A; Prinsen E; van Onckelen H; Kang BG; Hertel R Planta; 2001 May; 213(1):92-100. PubMed ID: 11523660 [TBL] [Abstract][Full Text] [Related]
25. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
26. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). Ku LX; Zhang J; Guo SL; Liu HY; Zhao RF; Chen YH J Exp Bot; 2012 Jan; 63(1):261-74. PubMed ID: 21984652 [TBL] [Abstract][Full Text] [Related]
27. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Jonczyk R; Schmidt H; Osterrieder A; Fiesselmann A; Schullehner K; Haslbeck M; Sicker D; Hofmann D; Yalpani N; Simmons C; Frey M; Gierl A Plant Physiol; 2008 Mar; 146(3):1053-63. PubMed ID: 18192444 [TBL] [Abstract][Full Text] [Related]
28. Genetic analysis and major quantitative trait locus mapping of leaf widths at different positions in multiple populations. Guo S; Ku L; Qi J; Tian Z; Han T; Zhang L; Su H; Ren Z; Chen Y PLoS One; 2015; 10(3):e0119095. PubMed ID: 25756495 [TBL] [Abstract][Full Text] [Related]
29. Flowering time in maize: linkage and epistasis at a major effect locus. Durand E; Bouchet S; Bertin P; Ressayre A; Jamin P; Charcosset A; Dillmann C; Tenaillon MI Genetics; 2012 Apr; 190(4):1547-62. PubMed ID: 22298708 [TBL] [Abstract][Full Text] [Related]
30. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. Zhao X; Luo L; Cao Y; Liu Y; Li Y; Wu W; Lan Y; Jiang Y; Gao S; Zhang Z; Shen Y; Pan G; Lin H BMC Genomics; 2018 Jan; 19(1):91. PubMed ID: 29370753 [TBL] [Abstract][Full Text] [Related]
31. Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize. Wei M; Fu J; Li X; Wang Y; Li Y J Appl Genet; 2009; 50(3):225-34. PubMed ID: 19638677 [TBL] [Abstract][Full Text] [Related]
32. Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population. Liu YH; Yi Q; Hou XB; Zhang XG; Zhang JJ; Liu HM; Hu YF; Huang YB Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420987 [TBL] [Abstract][Full Text] [Related]
33. Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. Fu Z; Li W; Zhang Q; Wang L; Zhang X; Song G; Fu Z; Ding D; Liu Z; Tang J PLoS One; 2014; 9(9):e107243. PubMed ID: 25210737 [TBL] [Abstract][Full Text] [Related]
34. The genetic architecture of amino acids dissection by association and linkage analysis in maize. Deng M; Li D; Luo J; Xiao Y; Liu H; Pan Q; Zhang X; Jin M; Zhao M; Yan J Plant Biotechnol J; 2017 Oct; 15(10):1250-1263. PubMed ID: 28218981 [TBL] [Abstract][Full Text] [Related]
35. Effect of light on DIMBOA synthesis in maize leaves as revealed by modified cost-effective extraction method. Chandra A; Singh SB; Kumar P Environ Monit Assess; 2013 Dec; 185(12):9917-24. PubMed ID: 23771234 [TBL] [Abstract][Full Text] [Related]
36. Simple method for large scale isolation of the cyclic arylhydroxamic acid DIMBOA from maize (Zea mays L.). Larsen E; Christensen LP J Agric Food Chem; 2000 Jun; 48(6):2556-8. PubMed ID: 10888583 [TBL] [Abstract][Full Text] [Related]
38. QTL identification of ear leaf morphometric traits under different nitrogen regimes in maize. Zheng ZP; Liu XH Genet Mol Res; 2013 Feb; 12(4):4342-51. PubMed ID: 23479157 [TBL] [Abstract][Full Text] [Related]
39. A deletion in an indole synthase gene is responsible for the DIMBOA-deficient phenotype of bxbx maize. Melanson D; Chilton MD; Masters-Moore D; Chilton WS Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13345-50. PubMed ID: 9371848 [TBL] [Abstract][Full Text] [Related]
40. The genetic architecture of maize stalk strength. Peiffer JA; Flint-Garcia SA; De Leon N; McMullen MD; Kaeppler SM; Buckler ES PLoS One; 2013; 8(6):e67066. PubMed ID: 23840585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]