These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 19911214)
1. 'Outwalk': a protocol for clinical gait analysis based on inertial and magnetic sensors. Cutti AG; Ferrari A; Garofalo P; Raggi M; Cappello A; Ferrari A Med Biol Eng Comput; 2010 Jan; 48(1):17-25. PubMed ID: 19911214 [TBL] [Abstract][Full Text] [Related]
2. First in vivo assessment of "Outwalk": a novel protocol for clinical gait analysis based on inertial and magnetic sensors. Ferrari A; Cutti AG; Garofalo P; Raggi M; Heijboer M; Cappello A; Davalli A Med Biol Eng Comput; 2010 Jan; 48(1):1-15. PubMed ID: 19911215 [TBL] [Abstract][Full Text] [Related]
3. Gait analysis in children with cerebral palsy via inertial and magnetic sensors. van den Noort JC; Ferrari A; Cutti AG; Becher JG; Harlaar J Med Biol Eng Comput; 2013 Apr; 51(4):377-86. PubMed ID: 23224902 [TBL] [Abstract][Full Text] [Related]
4. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors. Fantozzi S; Giovanardi A; Borra D; Gatta G PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131 [TBL] [Abstract][Full Text] [Related]
5. Impact of multilevel joint contractures of the hips, knees and ankles on the Gait Profile score in children with cerebral palsy. Holmes SJ; Mudge AJ; Wojciechowski EA; Axt MW; Burns J Clin Biomech (Bristol); 2018 Nov; 59():8-14. PubMed ID: 30099242 [TBL] [Abstract][Full Text] [Related]
6. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742 [TBL] [Abstract][Full Text] [Related]
7. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Damiano DL; Arnold AS; Steele KM; Delp SL Phys Ther; 2010 Feb; 90(2):269-79. PubMed ID: 20022999 [TBL] [Abstract][Full Text] [Related]
8. Dynamic spasticity determines hamstring length and knee flexion angle during gait in children with spastic cerebral palsy. Choi JY; Park ES; Park D; Rha DW Gait Posture; 2018 Jul; 64():255-259. PubMed ID: 29960141 [TBL] [Abstract][Full Text] [Related]
9. Validation of functional calibration and strap-down joint drift correction for computing 3D joint angles of knee, hip, and trunk in alpine skiing. Fasel B; Spörri J; Schütz P; Lorenzetti S; Aminian K PLoS One; 2017; 12(7):e0181446. PubMed ID: 28746383 [TBL] [Abstract][Full Text] [Related]
10. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study. Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162 [TBL] [Abstract][Full Text] [Related]
11. 3D spinal motion analysis during staircase walking using an ambulatory inertial and magnetic sensing system. Lee JK; Park EJ Med Biol Eng Comput; 2011 Jul; 49(7):755-64. PubMed ID: 21271292 [TBL] [Abstract][Full Text] [Related]
12. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models. Kainz H; Carty CP; Maine S; Walsh HPJ; Lloyd DG; Modenese L Gait Posture; 2017 Sep; 57():154-160. PubMed ID: 28641160 [TBL] [Abstract][Full Text] [Related]
13. Reliability of physical examination in the measurement of hip flexion contracture and correlation with gait parameters in cerebral palsy. Lee KM; Chung CY; Kwon DG; Han HS; Choi IH; Park MS J Bone Joint Surg Am; 2011 Jan; 93(2):150-8. PubMed ID: 21248212 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical and Clinical Correlates of Stance-Phase Knee Flexion in Persons With Spastic Cerebral Palsy. Rha DW; Cahill-Rowley K; Young J; Torburn L; Stephenson K; Rose J PM R; 2016 Jan; 8(1):11-8; quiz 18. PubMed ID: 26079863 [TBL] [Abstract][Full Text] [Related]
15. Ambulatory measurement of 3D knee joint angle. Favre J; Jolles BM; Aissaoui R; Aminian K J Biomech; 2008; 41(5):1029-35. PubMed ID: 18222459 [TBL] [Abstract][Full Text] [Related]
16. Rectus femoris transfer in cerebral palsy patients with stiff knee gait. Lee SY; Kwon SS; Chung CY; Lee KM; Choi Y; Kim TG; Shin WC; Choi IH; Cho TJ; Yoo WJ; Park MS Gait Posture; 2014; 40(1):76-81. PubMed ID: 24656919 [TBL] [Abstract][Full Text] [Related]
17. Threshold of equinus which alters biomechanical gait parameters in children. Houx L; Lempereur M; Rémy-Néris O; Brochard S Gait Posture; 2013 Sep; 38(4):582-9. PubMed ID: 23465759 [TBL] [Abstract][Full Text] [Related]
18. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. Hicks JL; Schwartz MH; Arnold AS; Delp SL J Biomech; 2008; 41(5):960-7. PubMed ID: 18291404 [TBL] [Abstract][Full Text] [Related]
19. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics. Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O Clin Biomech (Bristol); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949 [TBL] [Abstract][Full Text] [Related]
20. Gait posture estimation using wearable acceleration and gyro sensors. Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]