These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 19911347)
1. In situ gelation of supramolecular hydrogel for anti-tumor drug delivery. He B; Zeng J; Nie Y; Ji L; Wang R; Li Y; Wu Y; Li L; Wang G; Luo X; Zhang Z; Gu Z Macromol Biosci; 2009 Dec; 9(12):1169-75. PubMed ID: 19911347 [TBL] [Abstract][Full Text] [Related]
2. Potential use of gamma-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Abu Hashim II; Higashi T; Anno T; Motoyama K; Abd-ElGawad AE; El-Shabouri MH; Borg TM; Arima H Int J Pharm; 2010 Jun; 392(1-2):83-91. PubMed ID: 20298768 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
4. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and alpha-cyclodextrin. Li J; Ni X; Leong KW J Biomed Mater Res A; 2003 May; 65(2):196-202. PubMed ID: 12734812 [TBL] [Abstract][Full Text] [Related]
5. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Li J; Li X; Ni X; Wang X; Li H; Leong KW Biomaterials; 2006 Aug; 27(22):4132-40. PubMed ID: 16584769 [TBL] [Abstract][Full Text] [Related]
6. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. Fu C; Lin X; Wang J; Zheng X; Li X; Lin Z; Lin G J Mater Sci Mater Med; 2016 Apr; 27(4):73. PubMed ID: 26886821 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Zhu W; Li Y; Liu L; Chen Y; Xi F Int J Pharm; 2012 Nov; 437(1-2):11-9. PubMed ID: 22902390 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular self-assembly of monoend-functionalized methoxy poly(ethylene glycol) and α-cyclodextrin: from micelles to hydrogel. Long Y; Song H; He B; Lai Y; Liu R; Long C; Gu Z J Biomater Appl; 2012 Sep; 27(3):333-44. PubMed ID: 21926145 [TBL] [Abstract][Full Text] [Related]
9. In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Norton LW; Tegnell E; Toporek SS; Reichert WM Biomaterials; 2005 Jun; 26(16):3285-97. PubMed ID: 15603824 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular hydrogels formed from biodegradable ternary COS-g-PCL-b-MPEG copolymer with alpha-cyclodextrin and their drug release. Zhao S; Lee J; Xu W Carbohydr Res; 2009 Nov; 344(16):2201-8. PubMed ID: 19744645 [TBL] [Abstract][Full Text] [Related]
11. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Kang GD; Cheon SH; Song SC Int J Pharm; 2006 Aug; 319(1-2):29-36. PubMed ID: 16677786 [TBL] [Abstract][Full Text] [Related]
12. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery. Lin Q; Yang Y; Hu Q; Guo Z; Liu T; Xu J; Wu J; Kirk TB; Ma D; Xue W Acta Biomater; 2017 Feb; 49():456-471. PubMed ID: 27915016 [TBL] [Abstract][Full Text] [Related]
13. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel. Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. Yadav AK; Mishra P; Jain S; Mishra P; Mishra AK; Agrawal GP J Drug Target; 2008 Jul; 16(6):464-78. PubMed ID: 18604659 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of microcrystalline chitosan properties as a drug carrier. Part II. The influence of microcrystalline chitosan on release rate of ketoprofen. Bodek KH Acta Pol Pharm; 2001; 58(3):185-94. PubMed ID: 11712735 [TBL] [Abstract][Full Text] [Related]
16. Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Chun C; Lee SM; Kim CW; Hong KY; Kim SY; Yang HK; Song SC Biomaterials; 2009 Sep; 30(27):4752-62. PubMed ID: 19520429 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers. Yang Y; Hua C; Dong CM Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927 [TBL] [Abstract][Full Text] [Related]
18. Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Ma D; Tu K; Zhang LM Biomacromolecules; 2010 Sep; 11(9):2204-12. PubMed ID: 20831271 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Lin N; Dufresne A Biomacromolecules; 2013 Mar; 14(3):871-80. PubMed ID: 23347071 [TBL] [Abstract][Full Text] [Related]
20. Peptide-functionalized thermo-sensitive hydrogels for sustained drug delivery. Xun W; Wu DQ; Li ZY; Wang HY; Huang FW; Cheng SX; Zhang XZ; Zhuo RX Macromol Biosci; 2009 Dec; 9(12):1219-26. PubMed ID: 19924686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]