These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 19911422)
21. Differential expression of preprosomatostatin- and somatostatin receptor-encoding mRNAs in association with the growth hormone-insulin-like growth factor system during embryonic development of rainbow trout (Oncorhynchus mykiss). Malkuch H; Walock C; Kittilson JD; Raine JC; Sheridan MA Gen Comp Endocrinol; 2008; 159(2-3):136-42. PubMed ID: 18783723 [TBL] [Abstract][Full Text] [Related]
22. Role of differential cell proliferation in the tail bud in aberrant mouse neurulation. Peeters MC; Schutte B; Lenders MH; Hekking JW; Drukker J; Van Straaten HW Dev Dyn; 1998 Apr; 211(4):382-9. PubMed ID: 9566957 [TBL] [Abstract][Full Text] [Related]
23. Role of the brachial somites in the development of the appendicular musculature in rat embryos. Lee KK; Sze LY Dev Dyn; 1993 Oct; 198(2):86-96. PubMed ID: 8305709 [TBL] [Abstract][Full Text] [Related]
24. Differential expression of the two GH genes during embryonic development of rainbow trout Oncorhynchus mykiss in relation with the IGFs system. Gabillard JC; Duval H; Cauty C; Rescan PY; Weil C; Le Bail PY Mol Reprod Dev; 2003 Jan; 64(1):32-40. PubMed ID: 12420297 [TBL] [Abstract][Full Text] [Related]
25. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Yoshizaki G; Takeuchi Y; Sakatani S; Takeuchi T Int J Dev Biol; 2000 Apr; 44(3):323-6. PubMed ID: 10853829 [TBL] [Abstract][Full Text] [Related]
26. Rhesus glycoprotein and urea transporter genes are expressed in early stages of development of rainbow trout (Oncorhynchus mykiss). Hung CC; Nawata CM; Wood CM; Wright PA J Exp Zool A Ecol Genet Physiol; 2008 Jun; 309(5):262-8. PubMed ID: 18404668 [TBL] [Abstract][Full Text] [Related]
27. Salmonid pituitary gonadotrophs. III. Chronological appearance of GTH I and other adenohypophysial hormones in the pituitary of the developing rainbow trout (Oncorhynchus mykiss irideus). Saga T; Oota Y; Nozaki M; Swanson P Gen Comp Endocrinol; 1993 Nov; 92(2):233-41. PubMed ID: 8282173 [TBL] [Abstract][Full Text] [Related]
28. Proteomic analysis of inviable salmonid hybrids between female masu salmon Oncorhynchus masou masou and male rainbow trout Oncorhynchus mykiss during early embryogenesis. Zheng L; Tanaka H; Abe S J Fish Biol; 2011 May; 78(5):1508-28. PubMed ID: 21539556 [TBL] [Abstract][Full Text] [Related]
29. Expression of zebrafish connexin43.4 in the notochord and tail bud of wild-type and mutant no tail embryos. Essner JJ; Laing JG; Beyer EC; Johnson RG; Hackett PB Dev Biol; 1996 Aug; 177(2):449-62. PubMed ID: 8806823 [TBL] [Abstract][Full Text] [Related]
30. Expression profiles of growth-related genes during the very early development of rainbow trout embryos reared at two incubation temperatures. Li M; Raine JC; Leatherland JF Gen Comp Endocrinol; 2007; 153(1-3):302-10. PubMed ID: 17391672 [TBL] [Abstract][Full Text] [Related]
31. Diisopropylfluorophosphate inhibits acetylcholinesterase activity and disrupts somitogenesis in the zebrafish. Hanneman EH J Exp Zool; 1992 Aug; 263(1):41-53. PubMed ID: 1645120 [TBL] [Abstract][Full Text] [Related]
32. Early embryonic expression of the growth hormone family protein genes in the developing rainbow trout, Oncorhynchus mykiss. Yang BY; Greene M; Chen TT Mol Reprod Dev; 1999 Jun; 53(2):127-34. PubMed ID: 10331450 [TBL] [Abstract][Full Text] [Related]
33. Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from pvasa-GFP transgenic rainbow trout (Oncorhynchus mykiss). Yano A; von Schalburg K; Cooper G; Koop BF; Yoshizaki G Mol Reprod Dev; 2009 Mar; 76(3):246-54. PubMed ID: 18646050 [TBL] [Abstract][Full Text] [Related]
34. The mouse gene Noto is expressed in the tail bud and essential for its morphogenesis. Zizic Mitrecic M; Mitrecic D; Pochet R; Kostovic-Knezevic L; Gajovic S Cells Tissues Organs; 2010; 192(2):85-92. PubMed ID: 20197654 [TBL] [Abstract][Full Text] [Related]
35. The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Szeto DP; Kimelman D Genes Dev; 2006 Jul; 20(14):1923-32. PubMed ID: 16847349 [TBL] [Abstract][Full Text] [Related]
36. Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development. Kinna G; Kolle G; Carter A; Key B; Lieschke GJ; Perkins A; Little MH Mech Dev; 2006 Apr; 123(4):277-87. PubMed ID: 16524703 [TBL] [Abstract][Full Text] [Related]
37. Patterns of cell behaviour underlying somitogenesis and notochord formation in intact vertebrate embryos. Wood A; Thorogood P Dev Dyn; 1994 Oct; 201(2):151-67. PubMed ID: 7873787 [TBL] [Abstract][Full Text] [Related]
38. Removal of the chorion before hatching results in increased movement and accelerated growth in rainbow trout (Oncorhynchus mykiss) embryos. Ninness MM; Stevens ED; Wright PA J Exp Biol; 2006 May; 209(Pt 10):1874-82. PubMed ID: 16651553 [TBL] [Abstract][Full Text] [Related]
39. Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud: the evolution of somitogenesis in chordates. Schubert M; Holland LZ; Stokes MD; Holland ND Dev Biol; 2001 Dec; 240(1):262-73. PubMed ID: 11784062 [TBL] [Abstract][Full Text] [Related]
40. A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo. Reijntjes S; Stricker S; Mankoo BS Int J Dev Biol; 2007; 51(8):753-9. PubMed ID: 17939123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]