BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19911786)

  • 1. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine .
    Abu Tarboush N; Jensen LM; Feng M; Tachikawa H; Wilmot CM; Davidson VL
    Biochemistry; 2010 Nov; 49(45):9783-91. PubMed ID: 20929212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
    Geng J; Dornevil K; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9639-44. PubMed ID: 23720312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.
    Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL
    Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
    Abu Tarboush N; Yukl ET; Shin S; Feng M; Wilmot CM; Davidson VL
    Biochemistry; 2013 Sep; 52(37):6358-67. PubMed ID: 23952537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation.
    Yukl ET; Goblirsch BR; Davidson VL; Wilmot CM
    Biochemistry; 2011 Apr; 50(14):2931-8. PubMed ID: 21355604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG.
    Jensen LM; Meharenna YT; Davidson VL; Poulos TL; Hedman B; Wilmot CM; Sarangi R
    J Biol Inorg Chem; 2012 Dec; 17(8):1241-55. PubMed ID: 23053529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity.
    Abu Tarboush N; Shin S; Geng J; Liu A; Davidson VL
    FEBS Lett; 2012 Dec; 586(24):4339-43. PubMed ID: 23127557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away.
    Feng M; Ma Z; Crudup BF; Davidson VL
    FEBS Lett; 2017 Jun; 591(11):1566-1572. PubMed ID: 28485817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A catalytic di-heme bis-Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical.
    Li X; Fu R; Lee S; Krebs C; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8597-600. PubMed ID: 18562294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways.
    Yukl ET; Williamson HR; Higgins L; Davidson VL; Wilmot CM
    Biochemistry; 2013 Dec; 52(52):9447-55. PubMed ID: 24320950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
    Shin S; Abu Tarboush N; Davidson VL
    Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suicide inactivation of MauG during reaction with O(2) or H(2)O(2) in the absence of its natural protein substrate.
    Shin S; Lee S; Davidson VL
    Biochemistry; 2009 Oct; 48(42):10106-12. PubMed ID: 19788236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis.
    Li X; Feng M; Wang Y; Tachikawa H; Davidson VL
    Biochemistry; 2006 Jan; 45(3):821-8. PubMed ID: 16411758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.
    Jensen LM; Sanishvili R; Davidson VL; Wilmot CM
    Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing bis-Fe(IV) MauG: experimental evidence for the long-range charge-resonance model.
    Geng J; Davis I; Liu A
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3692-6. PubMed ID: 25631460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.