BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19911786)

  • 21. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MauG: a di-heme enzyme required for methylamine dehydrogenase maturation.
    Wilmot CM; Yukl ET
    Dalton Trans; 2013 Mar; 42(9):3127-35. PubMed ID: 23086017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of calcium in metalloenzymes: effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG.
    Chen Y; Naik SG; Krzystek J; Shin S; Nelson WH; Xue S; Yang JJ; Davidson VL; Liu A
    Biochemistry; 2012 Feb; 51(8):1586-97. PubMed ID: 22320333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG.
    Shin S; Yukl ET; Sehanobish E; Wilmot CM; Davidson VL
    Biochemistry; 2014 Mar; 53(8):1342-9. PubMed ID: 24517455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
    Davidson VL; Wilmot CM
    Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer.
    Dow BA; Davidson VL
    Biochem J; 2016 Jan; 473(1):67-72. PubMed ID: 26494530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic State of the His/Tyr-Ligated Heme of BthA by Mössbauer and DFT Analysis.
    Weitz AC; Biswas S; Rizzolo K; Elliott S; Bominaar EL; Hendrich MP
    Inorg Chem; 2020 Jul; 59(14):10223-10233. PubMed ID: 32602712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Wilmot CM; Davidson VL
    Curr Opin Chem Biol; 2009 Oct; 13(4):469-74. PubMed ID: 19648051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bis-Fe(IV): nature's sniper for long-range oxidation.
    Geng J; Davis I; Liu F; Liu A
    J Biol Inorg Chem; 2014 Oct; 19(7):1057-67. PubMed ID: 24722994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heme speciation in alkaline ferric FixL and possible tyrosine involvement in the signal transduction pathway for regulation of nitrogen fixation.
    Lukat-Rodgers GS; Rexine JL; Rodgers KR
    Biochemistry; 1998 Sep; 37(39):13543-52. PubMed ID: 9753440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch.
    Marvin KA; Kerby RL; Youn H; Roberts GP; Burstyn JN
    Biochemistry; 2008 Aug; 47(34):9016-28. PubMed ID: 18672900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone.
    Li X; Fu R; Liu A; Davidson VL
    Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis.
    Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL
    FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heme-Heme Interactions in Diheme Cytochromes: Effect of Mixed-Axial Ligation on the Electronic Structure and Electrochemical Properties.
    Khan FST; Samanta D; Chandel D; Shah SJ; Rath SP
    Inorg Chem; 2021 Sep; 60(17):12870-12882. PubMed ID: 34370470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation triggers extensive conjugation and unusual stabilization of two di-heme dication diradical intermediates: role of bridging group for electronic communication.
    Sil D; Dey S; Kumar A; Bhowmik S; Rath SP
    Chem Sci; 2016 Feb; 7(2):1212-1223. PubMed ID: 29910877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing Bis-Fe
    Guchhait T; Sarkar S; Pandit YA; Rath SP
    Chemistry; 2017 Aug; 23(43):10270-10275. PubMed ID: 28558158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.