These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19912329)

  • 1. Disruptions to human speed perception induced by motion adaptation and transcranial magnetic stimulation.
    Burton MP; McKeefry DJ; Barrett BT; Vakrou C; Morland AB
    Eur J Neurosci; 2009 Nov; 30(10):1989-98. PubMed ID: 19912329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A.
    McKeefry DJ; Burton MP; Vakrou C; Barrett BT; Morland AB
    J Neurosci; 2008 Jul; 28(27):6848-57. PubMed ID: 18596160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts perception and storage of the motion aftereffect.
    Théoret H; Kobayashi M; Ganis G; Di Capua P; Pascual-Leone A
    Neuropsychologia; 2002; 40(13):2280-7. PubMed ID: 12417458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A double dissociation between striate and extrastriate visual cortex for pattern motion perception revealed using rTMS.
    Thompson B; Aaen-Stockdale C; Koski L; Hess RF
    Hum Brain Mapp; 2009 Oct; 30(10):3115-26. PubMed ID: 19224619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive transcranial magnetic stimulation of human MT+ reduces apparent motion perception.
    Matsuyoshi D; Hirose N; Mima T; Fukuyama H; Osaka N
    Neurosci Lett; 2007 Dec; 429(2-3):131-5. PubMed ID: 17997041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of human cortical area V3A to the perception of chromatic motion: a transcranial magnetic stimulation study.
    McKeefry DJ; Burton MP; Morland AB
    Eur J Neurosci; 2010 Feb; 31(3):575-84. PubMed ID: 20105228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enhanced role for right hV5/MT+ in the analysis of motion in the contra- and ipsi-lateral visual hemi-fields.
    Strong SL; Silson EH; Gouws AD; Morland AB; McKeefry DJ
    Behav Brain Res; 2019 Oct; 372():112060. PubMed ID: 31251957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial magnetic stimulation differentially affects speed and direction judgments.
    Matthews N; Luber B; Qian N; Lisanby SH
    Exp Brain Res; 2001 Oct; 140(4):397-406. PubMed ID: 11685392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+.
    Silvanto J; Muggleton NG
    Neuroimage; 2008 May; 40(4):1841-8. PubMed ID: 18353682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation.
    Guzman-Lopez J; Silvanto J; Seemungal BM
    Clin Neurophysiol; 2011 Oct; 122(10):1951-5. PubMed ID: 21511523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupling of Early V5 Motion Processing from Visual Awareness: A Matter of Velocity as Revealed by Transcranial Magnetic Stimulation.
    Grasso PA; Làdavas E; Bertini C; Caltabiano S; Thut G; Morand S
    J Cogn Neurosci; 2018 Oct; 30(10):1517-1531. PubMed ID: 29916788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common (and multiple) neural substrates for static and dynamic motion after-effects: a rTMS investigation.
    Campana G; Maniglia M; Pavan A
    Cortex; 2013 Oct; 49(9):2590-4. PubMed ID: 23927999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of human brain area hMT+ in the perception of global motion investigated with repetitive transcranial magnetic stimulation (rTMS).
    Kaderali S; Kim YJ; Reynaud A; Mullen KT
    Brain Stimul; 2015; 8(2):200-7. PubMed ID: 25440579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychophysical and rTMS Evidence for the Presence of Motion Opponency in Human V5.
    Thompson B; Deblieck C; Wu A; Iacoboni M; Liu Z
    Brain Stimul; 2016; 9(6):876-881. PubMed ID: 27342938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating visual motion perception using the transcranial magnetic stimulation-adaptation paradigm.
    Cattaneo Z; Silvanto J
    Neuroreport; 2008 Sep; 19(14):1423-7. PubMed ID: 18766024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of MT impairs motion processing.
    Thakral PP; Slotnick SD
    Neurosci Lett; 2011 Mar; 490(3):226-30. PubMed ID: 21195742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static representations of speed and their neural correlates in human area MT/V5.
    Williams AL; Wright MJ
    Neuroreport; 2009 Oct; 20(16):1466-70. PubMed ID: 19770688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repetitive TMS over V5/MT shortens the duration of spatially localized motion aftereffect: the effects of pulse intensity and stimulation hemisphere.
    Murd C; Einberg A; Bachmann T
    Vision Res; 2012 Sep; 68():59-64. PubMed ID: 22842401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcranial alternating current stimulation attenuates visual motion adaptation.
    Kar K; Krekelberg B
    J Neurosci; 2014 May; 34(21):7334-40. PubMed ID: 24849365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fastest (and simplest), the earliest: the locus of processing of rapid forms of motion aftereffect.
    Campana G; Pavan A; Maniglia M; Casco C
    Neuropsychologia; 2011 Aug; 49(10):2929-34. PubMed ID: 21726570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.