These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19912456)

  • 81. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish.
    Liu DQ; Zhang JL; Pan ZF; Mai JT; Mei HJ; Dai Y; Zhang L; Wang QZ
    Int J Med Microbiol; 2020 Jan; 310(1):151378. PubMed ID: 31757695
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The Impact of Genome Region of Difference 4 (RD4) on Mycobacterial Virulence and BCG Efficacy.
    Ru H; Liu X; Lin C; Yang J; Chen F; Sun R; Zhang L; Liu J
    Front Cell Infect Microbiol; 2017; 7():239. PubMed ID: 28642843
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A new cultivation-independent tool for fast and reliable detection of Mycobacterium marinum.
    Slany M
    J Fish Dis; 2014 Apr; 37(4):363-9. PubMed ID: 23634824
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Distribution and genetic characterization of Mycobacterium chelonae in laboratory zebrafish Danio rerio.
    Whipps CM; Matthews JL; Kent ML
    Dis Aquat Organ; 2008 Oct; 82(1):45-54. PubMed ID: 19062752
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A recombinant vaccine expressing a mammalian Mycobacterium sp. antigen is immunostimulatory but not protective in striped bass.
    Pasnik DJ; Vemulapalli R; Smith SA; Schurig GG
    Vet Immunol Immunopathol; 2003 Sep; 95(1-2):43-52. PubMed ID: 12969635
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.
    Kenyon A; Gavriouchkina D; Zorman J; Napolitani G; Cerundolo V; Sauka-Spengler T
    Sci Rep; 2017 Jul; 7(1):6505. PubMed ID: 28747644
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Construction and characterization of a live, attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against the haemorrhagic septicaemia in turbot, Scophthamus maximus (L.).
    Lan MZ; Peng X; Xiang MY; Xia ZY; Bo W; Jie L; Li XY; Jun ZP
    Fish Shellfish Immunol; 2007 Sep; 23(3):521-30. PubMed ID: 17478097
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio).
    Ojanen MJT; Uusi-Mäkelä MIE; Harjula SE; Saralahti AK; Oksanen KE; Kähkönen N; Määttä JAE; Hytönen VP; Pesu M; Rämet M
    Sci Rep; 2019 Jan; 9(1):995. PubMed ID: 30700796
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Immunoprotective analysis of two Edwardsiella tarda antigens.
    Hou JH; Zhang WW; Sun L
    J Gen Appl Microbiol; 2009 Feb; 55(1):57-61. PubMed ID: 19282634
    [No Abstract]   [Full Text] [Related]  

  • 90. Pulmonary mycobacteriosis caused by Mycobacterium haemophilum and M. marinum in a royal python.
    Hernandez-Divers SJ; Shearer D
    J Am Vet Med Assoc; 2002 Jun; 220(11):1661-3, 1650. PubMed ID: 12051506
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis.
    Tobin DM; Ramakrishnan L
    Cell Microbiol; 2008 May; 10(5):1027-39. PubMed ID: 18298637
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genital mycobacteriosis caused by Mycobacterium marinum detected in two captive sharks by peptide nucleic acid-fluorescence in situ hybridization.
    Inohana M; Komine T; Tanaka Y; Kurata O; Wada S
    J Fish Dis; 2023 Jan; 46(1):47-59. PubMed ID: 36130072
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An interview with Lalita Ramakrishnan.
    Ramakrishnan L
    Trends Pharmacol Sci; 2013 Apr; 34(4):197. PubMed ID: 23566316
    [No Abstract]   [Full Text] [Related]  

  • 94. Analysis tools to quantify dissemination of pathology in zebrafish larvae.
    Stirling DR; Suleyman O; Gil E; Elks PM; Torraca V; Noursadeghi M; Tomlinson GS
    Sci Rep; 2020 Feb; 10(1):3149. PubMed ID: 32081863
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development.
    Chugh S; Bahal RK; Dhiman R; Singh R
    NPJ Vaccines; 2024 Mar; 9(1):57. PubMed ID: 38461350
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Protective Efficacy of BCG Vaccine against
    Orujyan D; Narinyan W; Rangarajan S; Rangchaikul P; Prasad C; Saviola B; Venketaraman V
    Vaccines (Basel); 2022 Mar; 10(3):. PubMed ID: 35335022
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mycobacteriosis and Infections with Non-tuberculous Mycobacteria in Aquatic Organisms: A Review.
    Delghandi MR; El-Matbouli M; Menanteau-Ledouble S
    Microorganisms; 2020 Sep; 8(9):. PubMed ID: 32906655
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Integrating fish models in tuberculosis vaccine development.
    Saralahti AK; Uusi-Mäkelä MIE; Niskanen MT; Rämet M
    Dis Model Mech; 2020 Aug; 13(8):. PubMed ID: 32859577
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Zebrafish as a Model for Fish Diseases in Aquaculture.
    Jørgensen LVG
    Pathogens; 2020 Jul; 9(8):. PubMed ID: 32726918
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The Zebrafish Breathes New Life into the Study of Tuberculosis.
    Myllymäki H; Bäuerlein CA; Rämet M
    Front Immunol; 2016; 7():196. PubMed ID: 27242801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.