These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19912563)

  • 21. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein S-nitrosylation in plants: photorespiratory metabolism and NO signaling.
    Gupta KJ
    Sci Signal; 2011 Jan; 4(154):jc1. PubMed ID: 21205936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel oxidative modifications in redox-active cysteine residues.
    Jeong J; Jung Y; Na S; Jeong J; Lee E; Kim MS; Choi S; Shin DH; Paek E; Lee HY; Lee KJ
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000513. PubMed ID: 21148632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.
    Nakamura T; Lipton SA
    Neurochem Res; 2016 Mar; 41(3):510-4. PubMed ID: 26118537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening systems for the identification of S-nitrosylated proteins.
    Uehara T; Nishiya T
    Nitric Oxide; 2011 Aug; 25(2):108-11. PubMed ID: 21111056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cysteine thiol sulfinic acid in plant stress signaling.
    Huang J; De Veirman L; Van Breusegem F
    Plant Cell Environ; 2024 Aug; 47(8):2766-2779. PubMed ID: 38251793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative post-translational modifications of cysteine residues in plant signal transduction.
    Waszczak C; Akter S; Jacques S; Huang J; Messens J; Van Breusegem F
    J Exp Bot; 2015 May; 66(10):2923-34. PubMed ID: 25750423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfur: the heart of nitric oxide-dependent redox signalling.
    Umbreen S; Lubega J; Loake GJ
    J Exp Bot; 2019 Aug; 70(16):4279-4286. PubMed ID: 30911750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of S-nitrosylated proteins in potato plant.
    Kato H; Takemoto D; Kawakita K
    Physiol Plant; 2013 Jul; 148(3):371-86. PubMed ID: 22924747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging role of protein-protein transnitrosylation in cell signaling pathways.
    Nakamura T; Lipton SA
    Antioxid Redox Signal; 2013 Jan; 18(3):239-49. PubMed ID: 22657837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases.
    Matamoros MA; Cutrona MC; Wienkoop S; Begara-Morales JC; Sandal N; Orera I; Barroso JB; Stougaard J; Becana M
    Plant Cell Physiol; 2020 Jan; 61(1):105-117. PubMed ID: 31529085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thioredoxin-1 and posttranslational modifications.
    Haendeler J
    Antioxid Redox Signal; 2006; 8(9-10):1723-8. PubMed ID: 16987024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic approaches to evaluate protein S-nitrosylation in disease.
    López-Sánchez LM; López-Pedrera C; Rodríguez-Ariza A
    Mass Spectrom Rev; 2014; 33(1):7-20. PubMed ID: 23775552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the S-nitrosoproteome: tools and strategies.
    López-Sánchez LM; Muntané J; de la Mata M; Rodríguez-Ariza A
    Proteomics; 2009 Feb; 9(4):808-18. PubMed ID: 19160395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences.
    Martínez-Ruiz A; Lamas S
    Cardiovasc Res; 2007 Jul; 75(2):220-8. PubMed ID: 17451659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signaling by S-nitrosylation in the heart.
    Murphy E; Kohr M; Menazza S; Nguyen T; Evangelista A; Sun J; Steenbergen C
    J Mol Cell Cardiol; 2014 Aug; 73():18-25. PubMed ID: 24440455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level.
    Puyaubert J; Fares A; Rézé N; Peltier JB; Baudouin E
    Plant Sci; 2014 Feb; 215-216():150-6. PubMed ID: 24388526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.
    Lipton SA; Choi YB; Takahashi H; Zhang D; Li W; Godzik A; Bankston LA
    Trends Neurosci; 2002 Sep; 25(9):474-80. PubMed ID: 12183209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins.
    Corpas FJ; González-Gordo S; Rodríguez-Ruiz M; Muñoz-Vargas MA; Palma JM
    Plant Cell Physiol; 2022 Jul; 63(7):889-900. PubMed ID: 35323963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics.
    Santos AI; Lourenço AS; Simão S; Marques da Silva D; Santos DF; Onofre de Carvalho AP; Pereira AC; Izquierdo-Álvarez A; Ramos E; Morato E; Marina A; Martínez-Ruiz A; Araújo IM
    Redox Biol; 2020 May; 32():101457. PubMed ID: 32088623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.