These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19912563)

  • 41. Protein denitrosylation: enzymatic mechanisms and cellular functions.
    Benhar M; Forrester MT; Stamler JS
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):721-32. PubMed ID: 19738628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins.
    Haendeler J; Hoffmann J; Zeiher AM; Dimmeler S
    Circulation; 2004 Aug; 110(7):856-61. PubMed ID: 15289372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway.
    Frungillo L; Skelly MJ; Loake GJ; Spoel SH; Salgado I
    Nat Commun; 2014 Nov; 5():5401. PubMed ID: 25384398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitric oxide function in plant biology: a redox cue in deconvolution.
    Yu M; Lamattina L; Spoel SH; Loake GJ
    New Phytol; 2014 Jun; 202(4):1142-1156. PubMed ID: 24611485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endogenous S-nitrosocysteine proteomic inventories identify a core of proteins in heart metabolic pathways.
    Lau B; Fazelinia H; Mohanty I; Raimo S; Tenopoulou M; Doulias PT; Ischiropoulos H
    Redox Biol; 2021 Nov; 47():102153. PubMed ID: 34610554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expanding roles for S-nitrosylation in the regulation of plant immunity.
    Borrowman S; Kapuganti JG; Loake GJ
    Free Radic Biol Med; 2023 Jan; 194():357-368. PubMed ID: 36513331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications.
    Majmudar JD; Konopko AM; Labby KJ; Tom CT; Crellin JE; Prakash A; Martin BR
    J Am Chem Soc; 2016 Feb; 138(6):1852-9. PubMed ID: 26780921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids.
    Ishida YI; Aki M; Fujiwara S; Nagahama M; Ogasawara Y
    Hum Cell; 2017 Oct; 30(4):279-289. PubMed ID: 28434171
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein S-nitrosylation in programmed cell death in plants.
    Huang D; Huo J; Zhang J; Wang C; Wang B; Fang H; Liao W
    Cell Mol Life Sci; 2019 May; 76(10):1877-1887. PubMed ID: 30783684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases.
    Nakamura T; Lipton SA
    Trends Pharmacol Sci; 2016 Jan; 37(1):73-84. PubMed ID: 26707925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thiol-based posttranslational modifications in parasites.
    Jortzik E; Wang L; Becker K
    Antioxid Redox Signal; 2012 Aug; 17(4):657-73. PubMed ID: 22085115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. S-Nitrosylation in plants: pattern and function.
    Lindermayr C; Durner J
    J Proteomics; 2009 Nov; 73(1):1-9. PubMed ID: 19619680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors.
    Sinha V; Wijewickrama GT; Chandrasena RE; Xu H; Edirisinghe PD; Schiefer IT; Thatcher GR
    ACS Chem Biol; 2010 Jul; 5(7):667-80. PubMed ID: 20524644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine.
    Wiesweg M; Berchner-Pfannschmidt U; Fandrey J; Petrat F; de Groot H; Kirsch M
    Free Radic Res; 2013 Feb; 47(2):104-15. PubMed ID: 23181469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of S-nitrosylated proteins in plants.
    Sell S; Lindermayr C; Durner J
    Methods Enzymol; 2008; 440():283-93. PubMed ID: 18423225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of protein S-nitrosylation with the biotin-switch technique.
    Forrester MT; Foster MW; Benhar M; Stamler JS
    Free Radic Biol Med; 2009 Jan; 46(2):119-26. PubMed ID: 18977293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications.
    Evangelista AM; Kohr MJ; Murphy E
    Antioxid Redox Signal; 2013 Oct; 19(11):1209-19. PubMed ID: 23157187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.